Without this change 0 is always used for the youngest sequence number if
a squash occured and the ROB was empty (E.g. an instruction is marked
serializeAfter or a fetch stall prevents other instructions from issuing).
Using 0 there is a race to rename where an instruction that committed the
same cycle as the squashing instruction can have it's renamed state undone
by the squash using sequence number 0.
I'm not positive this is the correct fix, but it's working right now.
Either we need to do something like this, prevent the misc reg from being renamed at all,
or there something else going on. We need to find the root cause as to why
this is only a problem sometimes.
The squash inside the fetch unit should not attempt to remove them from the
branch predictor as non-control instructions are not pushed into the predictor.
When this condition occurs the cpu should restart the fetch stage to fetch from
the original execution path. Fault handling in the commit stage is cleaned up a
little bit so the control flow is simplier. Finally, if an instruction is being
used to carry a fault it isn't executed, so the fault propagates appropriately.
The purpose of this patch is to change the way CacheMemory interfaces with
coherence protocols. Currently, whenever a cache controller (defined in the
protocol under consideration) needs to carry out any operation on a cache
block, it looks up the tag hash map and figures out whether or not the block
exists in the cache. In case it does exist, the operation is carried out
(which requires another lookup). As observed through profiling of different
protocols, multiple such lookups take place for a given cache block. It was
noted that the tag lookup takes anything from 10% to 20% of the simulation
time. In order to reduce this time, this patch is being posted.
I have to acknowledge that the many of the thoughts that went in to this
patch belong to Brad.
Changes to CacheMemory, TBETable and AbstractCacheEntry classes:
1. The lookup function belonging to CacheMemory class now returns a pointer
to a cache block entry, instead of a reference. The pointer is NULL in case
the block being looked up is not present in the cache. Similar change has
been carried out in the lookup function of the TBETable class.
2. Function for setting and getting access permission of a cache block have
been moved from CacheMemory class to AbstractCacheEntry class.
3. The allocate function in CacheMemory class now returns pointer to the
allocated cache entry.
Changes to SLICC:
1. Each action now has implicit variables - cache_entry and tbe. cache_entry,
if != NULL, must point to the cache entry for the address on which the action
is being carried out. Similarly, tbe should also point to the transaction
buffer entry of the address on which the action is being carried out.
2. If a cache entry or a transaction buffer entry is passed on as an
argument to a function, it is presumed that a pointer is being passed on.
3. The cache entry and the tbe pointers received __implicitly__ by the
actions, are passed __explicitly__ to the trigger function.
4. While performing an action, set/unset_cache_entry, set/unset_tbe are to
be used for setting / unsetting cache entry and tbe pointers respectively.
5. is_valid() and is_invalid() has been made available for testing whether
a given pointer 'is not NULL' and 'is NULL' respectively.
6. Local variables are now available, but they are assumed to be pointers
always.
7. It is now possible for an object of the derieved class to make calls to
a function defined in the interface.
8. An OOD token has been introduced in SLICC. It is same as the NULL token
used in C/C++. If you are wondering, OOD stands for Out Of Domain.
9. static_cast can now taken an optional parameter that asks for casting the
given variable to a pointer of the given type.
10. Functions can be annotated with 'return_by_pointer=yes' to return a
pointer.
11. StateMachine has two new variables, EntryType and TBEType. EntryType is
set to the type which inherits from 'AbstractCacheEntry'. There can only be
one such type in the machine. TBEType is set to the type for which 'TBE' is
used as the name.
All the protocols have been modified to conform with the new interface.
This patch updates the output for regression tests that are carried out on
MESI_CMP_directory protocol. The changes made to the protocol in order to
remove the bugs present result in regression failure for the 60.rubytest.
Since the earlier protocol was incorrect, so we certainly cannot relay on the
earlier reference output. Hence, the update.
I've renamed the check_whitespace operation to check_style. You're going to
need to change your .hg/hgrc file. While you're at it, add a pre-qrefresh
hook please.
This test exercises each of the functions in the reference counting pointer
implementation individually (except get()) and verifies they have some
minimially expected behavior. It also checks that reference counted objects
are freed when their usage count goes to 0 in some basic situations,
specifically a pointer being set to NULL and a pointer being deleted.
There's no reason for it to derive from SimLoopExitEvent.
This whole drain thing needs to be redone eventually,
but this is a stopgap to make later changes to
SimLoopExitEvent feasible.
Avoid direct references to mainEventQueue in pseudo-insts
by indirecting through associated CPU object.
Made exitSimLoop() more flexible to enable some of these.
There were several copies of similar functions that looked
like they all replicated reschedule(), so I replaced them
with direct calls. Keeping this separate from the previous
cset since there may be some subtle functional differences
if the code ever reschedules an event that is scheduled but
not squashed (though none were detected in the regressions).
Events need to be scheduled on the queue assigned
to the SimObject, not on the global queue (which
should be going away).
Also cleaned up a number of redundant expressions
that made the code unnecessarily verbose.
I like the brevity of Ali's recent change, but the ambiguity of
sometimes showing the source and sometimes the target is a little
confusing. This patch makes scons typically list all sources and
all targets for each action, with the common path prefix factored
out for brevity. It's a little more verbose now but also more
informative.
Somehow Ali talked me into adding colors too, which is a whole
'nother story.
This patch changes the manner in which data is copied from L1 to L2 cache in
the implementation of the Hammer's cache coherence protocol. Earlier, data was
copied directly from one cache entry to another. This has been broken in to
two parts. First, the data is copied from the source cache entry to a
transaction buffer entry. Then, data is copied from the transaction buffer
entry to the destination cache entry.
This has been done to maintain the invariant - at any given instant, multiple
caches under a controller are exclusive with respect to each other.
These files really aren't general enough to belong in src/base.
This patch doesn't reorder include lines, leaving them unsorted
in many cases, but Nate's magic script will fix that up shortly.
--HG--
rename : src/base/sched_list.hh => src/cpu/sched_list.hh
rename : src/base/timebuf.hh => src/cpu/timebuf.hh
Ran all the source files through 'perl -pi' with this script:
s|\s*(};?\s*)?/\*\s*(end\s*)?namespace\s*(\S+)\s*\*/(\s*})?|} // namespace $3|;
s|\s*};?\s*//\s*(end\s*)?namespace\s*(\S+)\s*|} // namespace $2\n|;
s|\s*};?\s*//\s*(\S+)\s*namespace\s*|} // namespace $1\n|;
Also did a little manual editing on some of the arch/*/isa_traits.hh files
and src/SConscript.
These operators were expecting a const T& instead of a const T*, and were not
being picked up and used by gcc in the right places as a result. Apparently no
one used these operators before. A unit test which exposed these problems,
verified the solution, and checks other basic functionality is on the way.
This patch adds an option to the script Ruby.py for setting the parameter
m_random_seed used for randomizing delays in the memory system. The option
can be specified as "--random_seed <seed value>".