This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.
The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.
This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.
Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.
The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.
This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.
Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
This patch aligns all MSHR queue entries to block boundaries to
simplify checks for matches. Previously there were corner cases that
could lead to existing entries not being identified as matches.
There are, rather alarmingly, a few regressions that change with this
patch.
This patch adds a bit of clarification around the assumptions made in
the cache when packets are sent out, and dirty responses are
pending. As part of the change, the marking of an MSHR as in service
is simplified slightly, and comments are added to explain what
assumptions are made.
Adds a new parameter that reserves some number of MSHR entries for demand
accesses. This helps prevent prefetchers from taking all MSHRs, forcing demand
requests from the CPU to stall.
This patch squashes prefetch requests from downstream caches,
so that they do not steal cachelines away from caches closer
to the cpu. It was originally coded by Mitch Hayenga and
modified by Aasheesh Kolli.
This patch does some minor tidying up of the MSHR and MSHRQueue. The
clean up started as part of some ad-hoc tracing and debugging, but
seems worthwhile enough to go in as a separate patch.
The highlights of the changes are reduced scoping (private) members
where possible, avoiding redundant new/delete, and constructor
initialisation to please static code analyzers.
This patch adds support for the following optional drain methods in
the classical memory system's cache model:
memWriteback() - Write back all dirty cache lines to memory using
functional accesses.
memInvalidate() - Invalidate all cache lines. Dirty cache lines
are lost unless a writeback is requested.
Since memWriteback() is called when checkpointing systems, this patch
adds support for checkpointing systems with caches. The serialization
code now checks whether there are any dirty lines in the cache. If
there are dirty lines in the cache, the checkpoint is flagged as bad
and a warning is printed.
Allow lower-level caches (e.g., L2 or L3) to pass exclusive
copies to higher levels (e.g., L1). This eliminates a lot
of unnecessary upgrade transactions on read-write sequences
to non-shared data.
Also some cleanup of MSHR coherence handling and multiple
bug fixes.