The MaltaPChip class is currently unused and identical (except for the
class name) to the TsunamiPChip. If someone decides to implement PCI
for Malta, they should make sure to share code with the Tsunami
implementation if they are similar.
The gem5 option '--list-sim-objects' is supposed to list all available
SimObjects and their parameters. It currently chokes on SimObjects
with parameters that have an object instance as their default
value. This is caused by __str__ in SimObject trying to resolve its
complete path. When the path resolution method reaches the parent
object (a MetaSimObject since it hasn't been instantiated), it dies
with a Python exception.
This changeset adds a guard to stop path resolution if the parent
object is a MetaSimObject.
Added the missing types EthernetAddr and Current to the JSON/INI file
reader example configs/example/read_config.py.
Also added __str__ to EthernetAddr to make values appear in the same form
in JSON an INI files.
The flash model has typos in its serialization code for
unknownPages, locationTable, blockValidEntries, and blockEmptyEntries
arrays where it would save each entry in the array under the same
name in the checkpoint. This patch fixes these typos.
As per the x86 architecture specification, matching TLB entries need to be
invalidated on a page fault. For instance, after a page fault due to inadequate
protection bits on a TLB hit, the TLB entry needs to be invalidated. This
behavior is clearly specified in the x86 architecture manuals from both AMD and
Intel. This invalidation is missing currently in gem5, due to which linux
kernel versions 3.8 and up cannot be simulated efficiently. This is exposed by
a linux optimisation in commit e4a1cc56e4d728eb87072c71c07581524e5160b1, which
removes a tlb flush on updating page table entries in x86.
Testing: Linux kernel versions 3.8 onwards were booting very slowly in FS mode,
due to repeated page faults (~300000 before the first print statement in a
bash file). Ensured that page fault rate drops drastically and observed
reduction in boot time from order of hours to minutes for linux kernel v3.8
and v3.11
doCpuid() has to identical warn messages about unimplemented functions. Add
the family to the log message to make them distinguishable.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Remove sparc V8 TBR register from list of registers since it is not part of
sparc V9. This brings the number of registers in sync with what gdb expects
Without this patch gdb complains about receoved packet too long.
with this patch gdb is able to work properly with gem5 for remote debugging.
Note: gdb is version 7.8
Note: gdb is configured with --target=sparc64-sun-solaris2.8
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
the sanity check, while generally useful for exposing memory system bugs,
may be spurious with respect to GPU workloads, which may generate many more
requests than typical CPU workloads. the large number of requests generated
by the GPU may cause the req/resp queues to back up, thus queueing more than
100 packets.
The IICRPR register in the GIC is currently not being initialized when
the GIC is instantiated. Initialize to the value mandated by the
architecture specification.
This patch adds very basic checkpoint support for the VirtIO9PProxy
device. Previously, attempts to checkpoint gem5 with a present 9P
device caused gem5 to fatal as none of the state is tracked. We still
do not track any state, but we replace the fatal with a warning which
is triggered if the device has been used by the guest system. In the
event that it has not been used, we assume that no state is lost
during checkpointing. The warning is triggered on both a serialize and
an unserialize to ensure maximum visibility for the user.
Cleanup PCI devices to avoid using the PciDevice::platform pointer
directly. The PCI-specific functionality provided by the Platform
should be accessed through the wrappers in PciDevice.
This patch adds yet another twist to the memtest cache hierarchy, in that
the writeback_clean option is toggled at every level to match the
clusivity of the downstream cache.
This patch adds the necessary commands and cache functionality to
allow clean writebacks. This functionality is crucial, especially when
having exclusive (victim) caches. For example, if read-only L1
instruction caches are not sending clean writebacks, there will never
be any spills from the L1 to the L2. At the moment the cache model
defaults to not sending clean writebacks, and this should possibly be
re-evaluated.
The implementation of clean writebacks relies on a new packet command
WritebackClean, which acts much like a Writeback (renamed
WritebackDirty), and also much like a CleanEvict. On eviction of a
clean block the cache either sends a clean evict, or a clean
writeback, and if any copies are still cached upstream the clean
evict/writeback is dropped. Similarly, if a clean evict/writeback
reaches a cache where there are outstanding MSHRs for the block, the
packet is dropped. In the typical case though, the clean writeback
allocates a block in the downstream cache, and marks it writable if
the evicted block was writable.
The patch changes the O3_ARM_v7a L1 cache configuration and the
default L1 caches in config/common/Caches.py
This patch adds an new twist to the memtest cache hierarchy, in that
it switches from mostly inclusive to mostly exclusive at every level
in the tree. This has helped weed out plenty issues, and serves as a
good stress tests.
This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.
The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.
This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.
Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.
The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
This patch optimises the handling of writebacks and clean evictions
when using a snoop filter. Instead of snooping into the caches to
determine if the block is cached or not, simply set the status based
on the snoop-filter result.
Instead of conservatively enforcing order for all packets, which may
negatively impact the simulated-system performance, this patch updates
the packet queue such that it only applies the restriction if there
are already packets with the same address in the queue.
The basic need for the order enforcement is due to coherency
interactions where requests/responses to the same cache line must not
over-take each other. We rely on the fact that any packet that needs
order enforcement will have a block-aligned address. Thus, there is no
need for the queue to know about the cacheline size.
This patch enforces insertion order transmission of packets on the
response path in the cache. Note that the logic to enforce order is
already present in the packet queue, this patch simply turns it on for
queues in the response path.
Without this patch, there are corner cases where a request-response is
faster than a response-response forwarded through the cache. This
violation of queuing order causes problems in the snoop filter leaving
it with inaccurate information. This causes assert failures in the
snoop filter later on.
A follow on patch relaxes the order enforcement in the packet queue to
limit the performance impact.
This patch updates the I/O devices, bridge and simple memory to take
the packet header and payload delay into account in their latency
calculations. In all cases we add the header delay, i.e. the
accumulated pipeline delay of any crossbars, and the payload delay
needed for deserialisation of any payload.
Due to the additional unknown latency contribution, the packet queue
of the simple memory is changed to use insertion sorting based on the
time stamp. Moreover, since the memory hands out exclusive (non
shared) responses, we also need to ensure ordering for reads to the
same address.
This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.
In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
This patch changes the CleanEvict command type to not be considered a
write. Initially it was made a zero-sized write to match the writeback
command, but as things developed it became clear that it causes more
problems than it solves. For example, the memory modules (and bridge)
should not consider the CleanEvict as a write, but instead discard
it. With this patch it will be neither a read, nor write, and as it
does not need a response the slave will simply sink it.
This patch unifies how we deal with delayed packet deletion, where the
receiving slave is responsible for deleting the packet, but the
sending agent (e.g. a cache) is still relying on the pointer until the
call to sendTimingReq completes. Previously we used a mix of a
deletion vector and a construct using unique_ptr. With this patch we
ensure all slaves use the latter approach.
The CoherentXBar currently doesn't check its queued slave ports when
receiving a functional snoop. This caused data corruption in cases
when a modified cache lines is forwarded between two caches.
Add the required functional calls into the queued slave ports.
This changeset adds a serial link model for the Hybrid Memory Cube (HMC).
SerialLink is a simple variation of the Bridge class, with the ability to
account for the latency of packet serialization. Also trySendTiming has been
modified to correctly model bandwidth.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This patch models a simple HMC Controller. It simply schedules the incoming
packets to HMC Serial Links using a round robin mechanism. This patch should
be applied in series with other patches modeling a complete HMC device.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>