The code that checks whether pages allocated by allocPhysPages only checks
that the first page fits into physical memory, not that all of them do. This
change makes the code check the last page which should work properly. This
function used to only allocate one page at a time, so the first page and last
page used to be the same thing.
Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.
The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
--HG--
rename : src/mem/vport.cc => src/mem/fs_translating_port_proxy.cc
rename : src/mem/vport.hh => src/mem/fs_translating_port_proxy.hh
rename : src/mem/translating_port.cc => src/mem/se_translating_port_proxy.cc
rename : src/mem/translating_port.hh => src/mem/se_translating_port_proxy.hh
The system port is used as a globally reachable access point to the
memory subsystem. The benefit of using an actual port is that the
usual infrastructure is used to resolve any access and thus makes the
overall system able to handle distributed memories in any
configuration, and also makes the accesses agnostic to the address
map. This patch only introduces the port and does not actually use it
for anything.
This patch adds a mechanism to collect run time samples for specific portions
of a benchmark, using work_begin and work_end pseudo instructions.It also enhances
the histogram stat to report geometric mean.
PageTable supported an allocate() call that called back
through the Process to allocate memory, but did not have
a method to map addresses without allocating new pages.
It makes more sense for Process to do the allocation, so
this method was renamed allocateMem() and moved to Process,
and uses a new map() call on PageTable.
The remaining uses of the process pointer in PageTable
were only to get the name and the PID, so by passing these
in directly in the constructor, we can make PageTable
completely independent of Process.
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help
This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
Expand the help text on the --remote-gdb-port option so
people know you can use it to disable remote gdb without
reading the source code, and thus don't waste any time
trying to add a separate option to do that.
Clean up some gdb-related cruft I found while looking
for where one would add a gdb disable option, before
I found the comment that told me that I didn't need
to do that.
Basically merge it in with Halted.
Also had to get rid of a few other functions that
called ThreadContext::deallocate(), including:
- InOrderCPU's setThreadRescheduleCondition.
- ThreadContext::exit(). This function was there to avoid terminating
simulation when one thread out of a multi-thread workload exits, but we
need to find a better (non-cpu-centric) way.
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.
SE. Process still keeps track of the tc's it owns, but registration occurs
with the System, this eases the way for system-wide context Ids based on
registration.
across the subclasses. generally make it so that member data is _cpuId and
accessor functions are cpuId(). The ID val comes from the python (default -1 if
none provided), and if it is -1, the index of cpuList will be given. this has
passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard
switch.
SimObjects not yet updated:
- Process and subclasses
- BaseCPU and subclasses
The SimObject(const std::string &name) constructor was removed. Subclasses
that still rely on that behavior must call the parent initializer as
: SimObject(makeParams(name))
--HG--
extra : convert_revision : d6faddde76e7c3361ebdbd0a7b372a40941c12ed
creation and initialization now happens in python. Parameter objects
are generated and initialized by python. The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.
--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
src/arch/alpha/utility.hh:
src/arch/mips/utility.hh:
src/arch/sparc/utility.hh:
src/arch/x86/utility.hh:
add hook for system to startup the cpu or not... in the case of FS sparc, only the first cpu would get spunup.. the rest sit in an idle state until they get an ipi
src/arch/sparc/isa/decoder.isa:
handle writable bits of strandstatus register in miscregfile
src/arch/sparc/miscregfile.hh:
some constants for the strand status register
src/arch/sparc/ua2005.cc:
properly implement the strand status register
src/dev/sparc/iob.cc:
implement ipi generation properly
src/sim/system.cc:
call into the ISA to start the CPU (or not)
--HG--
extra : convert_revision : 0003b2032337d8a031a9fc044da726dbb2a9e36f
Add the ability to use an address mask for symbol loading
Rather then silently failing on platform accesses panic
Move BadAddr/IsaFake no Device from Tsunami
Let the system kernel be none, but warn about it
configs/common/FSConfig.py:
We don't have a kernel for sparc yet
src/arch/sparc/system.cc:
Load the hypervisor symbols twice, once with an address mask so that we can get symbols for where it's copied to in memory
src/base/loader/aout_object.cc:
src/base/loader/aout_object.hh:
src/base/loader/ecoff_object.cc:
src/base/loader/ecoff_object.hh:
src/base/loader/elf_object.cc:
src/base/loader/elf_object.hh:
src/base/loader/object_file.hh:
src/base/loader/raw_object.cc:
src/base/loader/raw_object.hh:
Add the ability to use an address mask for symbol loading
src/dev/sparc/t1000.cc:
Rather then silently failing on platform accesses panic
src/dev/sparc/t1000.hh:
fix up a couple of platform comments
src/python/m5/objects/Bus.py:
src/python/m5/objects/Device.py:
src/python/m5/objects/T1000.py:
src/python/m5/objects/Tsunami.py:
Move BadAddr/IsaFake no Device from Tsunami
src/python/m5/objects/System.py:
Let kernel be none
src/sim/system.cc:
Let the system kernel be none, but warn about it
--HG--
extra : convert_revision : 92f6afef599a3d3c7c5026d03434102c41c7b5f4
Make new_page() check for an out of memory condition
src/sim/system.cc:
Make new_page() check for an out of memory condition
--HG--
extra : convert_revision : daee82788464fca186eb24285b5f43c9fabc25b3
update scripts acordingly
configs/test/SysPaths.py:
new syspaths from nate, this one allows you to set script, binary, and disk paths like
system.dir = 'aouaou' in your script
configs/test/fs.py:
update for system mem_mode
Put small checkpoint example
Make clock 1THz
configs/test/test.py:
src/arch/alpha/freebsd/system.cc:
src/arch/alpha/linux/system.cc:
src/arch/alpha/system.cc:
src/arch/alpha/tru64/system.cc:
src/arch/sparc/system.cc:
src/python/m5/objects/System.py:
src/sim/system.cc:
src/sim/system.hh:
update for system mem_mode
src/dev/io_device.cc:
Use time returned from sendAtomic to delay
--HG--
extra : convert_revision : 67eedb3c84ab2584613faf88a534e793926fc92f
States are now running, draining, or drained. memory state information moved into system object
system parameter is not fs only for cpus
Implement drain() support in devices
Update for drain() call that returns number of times drain_event->process() will be called
Break O3 CPU! No sense in putting in a hack change that kevin is going to remove in a few minutes i imagine
src/cpu/simple/atomic.cc:
src/cpu/simple/atomic.hh:
Since se mode has a system, allow access to it
Verify that the atomic cpu is connected to an atomic system on resume
src/cpu/simple/base.cc:
Since se mode has a system, allow access to it
src/cpu/simple/timing.cc:
src/cpu/simple/timing.hh:
Update for new drain() call that returns number of times drain_event->process() will be called and memory state being moved into the system
Since se mode has a system, allow access to it
Verify that the timing cpu is connected to an timing system on resume
src/dev/ide_disk.cc:
src/dev/io_device.cc:
src/dev/io_device.hh:
src/dev/ns_gige.cc:
src/dev/ns_gige.hh:
src/dev/pcidev.cc:
src/dev/pcidev.hh:
src/dev/sinic.cc:
src/dev/sinic.hh:
Implement drain() support in devices
src/python/m5/config.py:
Allow drain to return number of times drain_event->process() will be called. Normally 0 or 1 but things like O3 cpu or devices with multiple ports may want to call it many times
src/python/m5/objects/BaseCPU.py:
move system parameter out of fs to everyone
src/sim/sim_object.cc:
src/sim/sim_object.hh:
States are now running, draining, or drained. memory state information moved into system object
src/sim/system.cc:
src/sim/system.hh:
memory mode information now contained in system object
--HG--
extra : convert_revision : 1389c77e66ee6d9710bf77b4306fb47e107b21cf