2006-04-23 00:26:48 +02:00
|
|
|
/*
|
2006-05-19 21:53:17 +02:00
|
|
|
* Copyright (c) 2004-2006 The Regents of The University of Michigan
|
2006-04-23 00:26:48 +02:00
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
* met: redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer;
|
|
|
|
* redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution;
|
|
|
|
* neither the name of the copyright holders nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
2006-06-07 22:02:55 +02:00
|
|
|
*
|
|
|
|
* Authors: Kevin Lim
|
|
|
|
* Korey Sewell
|
2006-04-23 00:26:48 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __CPU_O3_LSQ_UNIT_HH__
|
|
|
|
#define __CPU_O3_LSQ_UNIT_HH__
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
#include <algorithm>
|
2006-04-23 00:26:48 +02:00
|
|
|
#include <map>
|
|
|
|
#include <queue>
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
#include "arch/faults.hh"
|
2006-10-23 20:00:07 +02:00
|
|
|
#include "arch/locked_mem.hh"
|
2006-04-23 00:26:48 +02:00
|
|
|
#include "config/full_system.hh"
|
|
|
|
#include "base/hashmap.hh"
|
|
|
|
#include "cpu/inst_seq.hh"
|
2006-10-20 08:38:45 +02:00
|
|
|
#include "mem/packet.hh"
|
2006-06-03 00:15:20 +02:00
|
|
|
#include "mem/port.hh"
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/**
|
2006-05-19 21:53:17 +02:00
|
|
|
* Class that implements the actual LQ and SQ for each specific
|
|
|
|
* thread. Both are circular queues; load entries are freed upon
|
|
|
|
* committing, while store entries are freed once they writeback. The
|
|
|
|
* LSQUnit tracks if there are memory ordering violations, and also
|
|
|
|
* detects partial load to store forwarding cases (a store only has
|
|
|
|
* part of a load's data) that requires the load to wait until the
|
|
|
|
* store writes back. In the former case it holds onto the instruction
|
|
|
|
* until the dependence unit looks at it, and in the latter it stalls
|
|
|
|
* the LSQ until the store writes back. At that point the load is
|
|
|
|
* replayed.
|
2006-04-23 00:26:48 +02:00
|
|
|
*/
|
|
|
|
template <class Impl>
|
|
|
|
class LSQUnit {
|
|
|
|
protected:
|
|
|
|
typedef TheISA::IntReg IntReg;
|
|
|
|
public:
|
|
|
|
typedef typename Impl::Params Params;
|
2006-06-16 23:08:47 +02:00
|
|
|
typedef typename Impl::O3CPU O3CPU;
|
2006-04-23 00:26:48 +02:00
|
|
|
typedef typename Impl::DynInstPtr DynInstPtr;
|
|
|
|
typedef typename Impl::CPUPol::IEW IEW;
|
2006-07-13 19:12:51 +02:00
|
|
|
typedef typename Impl::CPUPol::LSQ LSQ;
|
2006-04-23 00:26:48 +02:00
|
|
|
typedef typename Impl::CPUPol::IssueStruct IssueStruct;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** Constructs an LSQ unit. init() must be called prior to use. */
|
|
|
|
LSQUnit();
|
|
|
|
|
|
|
|
/** Initializes the LSQ unit with the specified number of entries. */
|
2007-04-04 21:38:59 +02:00
|
|
|
void init(O3CPU *cpu_ptr, IEW *iew_ptr, Params *params, LSQ *lsq_ptr,
|
|
|
|
unsigned maxLQEntries, unsigned maxSQEntries, unsigned id);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** Returns the name of the LSQ unit. */
|
|
|
|
std::string name() const;
|
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Registers statistics. */
|
|
|
|
void regStats();
|
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
/** Sets the pointer to the dcache port. */
|
2007-04-04 21:38:59 +02:00
|
|
|
void setDcachePort(Port *dcache_port);
|
2006-07-13 19:12:51 +02:00
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Switches out LSQ unit. */
|
2006-05-04 17:36:20 +02:00
|
|
|
void switchOut();
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Takes over from another CPU's thread. */
|
2006-05-04 17:36:20 +02:00
|
|
|
void takeOverFrom();
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Returns if the LSQ is switched out. */
|
2006-05-04 17:36:20 +02:00
|
|
|
bool isSwitchedOut() { return switchedOut; }
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
/** Ticks the LSQ unit, which in this case only resets the number of
|
|
|
|
* used cache ports.
|
|
|
|
* @todo: Move the number of used ports up to the LSQ level so it can
|
|
|
|
* be shared by all LSQ units.
|
|
|
|
*/
|
|
|
|
void tick() { usedPorts = 0; }
|
|
|
|
|
|
|
|
/** Inserts an instruction. */
|
|
|
|
void insert(DynInstPtr &inst);
|
|
|
|
/** Inserts a load instruction. */
|
|
|
|
void insertLoad(DynInstPtr &load_inst);
|
|
|
|
/** Inserts a store instruction. */
|
|
|
|
void insertStore(DynInstPtr &store_inst);
|
|
|
|
|
|
|
|
/** Executes a load instruction. */
|
|
|
|
Fault executeLoad(DynInstPtr &inst);
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
|
2006-04-23 00:26:48 +02:00
|
|
|
/** Executes a store instruction. */
|
|
|
|
Fault executeStore(DynInstPtr &inst);
|
|
|
|
|
|
|
|
/** Commits the head load. */
|
|
|
|
void commitLoad();
|
|
|
|
/** Commits loads older than a specific sequence number. */
|
|
|
|
void commitLoads(InstSeqNum &youngest_inst);
|
|
|
|
|
|
|
|
/** Commits stores older than a specific sequence number. */
|
|
|
|
void commitStores(InstSeqNum &youngest_inst);
|
|
|
|
|
|
|
|
/** Writes back stores. */
|
|
|
|
void writebackStores();
|
|
|
|
|
2006-06-23 00:09:31 +02:00
|
|
|
/** Completes the data access that has been returned from the
|
|
|
|
* memory system. */
|
2006-06-03 00:15:20 +02:00
|
|
|
void completeDataAccess(PacketPtr pkt);
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
/** Clears all the entries in the LQ. */
|
|
|
|
void clearLQ();
|
|
|
|
|
|
|
|
/** Clears all the entries in the SQ. */
|
|
|
|
void clearSQ();
|
|
|
|
|
|
|
|
/** Resizes the LQ to a given size. */
|
|
|
|
void resizeLQ(unsigned size);
|
|
|
|
|
|
|
|
/** Resizes the SQ to a given size. */
|
|
|
|
void resizeSQ(unsigned size);
|
|
|
|
|
|
|
|
/** Squashes all instructions younger than a specific sequence number. */
|
|
|
|
void squash(const InstSeqNum &squashed_num);
|
|
|
|
|
|
|
|
/** Returns if there is a memory ordering violation. Value is reset upon
|
|
|
|
* call to getMemDepViolator().
|
|
|
|
*/
|
|
|
|
bool violation() { return memDepViolator; }
|
|
|
|
|
|
|
|
/** Returns the memory ordering violator. */
|
|
|
|
DynInstPtr getMemDepViolator();
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
/** Returns if a load became blocked due to the memory system. */
|
2006-04-23 00:26:48 +02:00
|
|
|
bool loadBlocked()
|
|
|
|
{ return isLoadBlocked; }
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Clears the signal that a load became blocked. */
|
2006-04-23 00:26:48 +02:00
|
|
|
void clearLoadBlocked()
|
|
|
|
{ isLoadBlocked = false; }
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Returns if the blocked load was handled. */
|
2006-04-23 00:26:48 +02:00
|
|
|
bool isLoadBlockedHandled()
|
|
|
|
{ return loadBlockedHandled; }
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Records the blocked load as being handled. */
|
2006-04-23 00:26:48 +02:00
|
|
|
void setLoadBlockedHandled()
|
|
|
|
{ loadBlockedHandled = true; }
|
|
|
|
|
|
|
|
/** Returns the number of free entries (min of free LQ and SQ entries). */
|
|
|
|
unsigned numFreeEntries();
|
|
|
|
|
|
|
|
/** Returns the number of loads ready to execute. */
|
|
|
|
int numLoadsReady();
|
|
|
|
|
|
|
|
/** Returns the number of loads in the LQ. */
|
|
|
|
int numLoads() { return loads; }
|
|
|
|
|
|
|
|
/** Returns the number of stores in the SQ. */
|
|
|
|
int numStores() { return stores; }
|
|
|
|
|
|
|
|
/** Returns if either the LQ or SQ is full. */
|
|
|
|
bool isFull() { return lqFull() || sqFull(); }
|
|
|
|
|
|
|
|
/** Returns if the LQ is full. */
|
|
|
|
bool lqFull() { return loads >= (LQEntries - 1); }
|
|
|
|
|
|
|
|
/** Returns if the SQ is full. */
|
|
|
|
bool sqFull() { return stores >= (SQEntries - 1); }
|
|
|
|
|
|
|
|
/** Returns the number of instructions in the LSQ. */
|
|
|
|
unsigned getCount() { return loads + stores; }
|
|
|
|
|
|
|
|
/** Returns if there are any stores to writeback. */
|
|
|
|
bool hasStoresToWB() { return storesToWB; }
|
|
|
|
|
|
|
|
/** Returns the number of stores to writeback. */
|
|
|
|
int numStoresToWB() { return storesToWB; }
|
|
|
|
|
|
|
|
/** Returns if the LSQ unit will writeback on this cycle. */
|
|
|
|
bool willWB() { return storeQueue[storeWBIdx].canWB &&
|
2006-06-06 00:14:39 +02:00
|
|
|
!storeQueue[storeWBIdx].completed &&
|
|
|
|
!isStoreBlocked; }
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
/** Handles doing the retry. */
|
|
|
|
void recvRetry();
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
private:
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Writes back the instruction, sending it to IEW. */
|
2006-06-06 00:14:39 +02:00
|
|
|
void writeback(DynInstPtr &inst, PacketPtr pkt);
|
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Handles completing the send of a store to memory. */
|
2006-10-20 09:10:12 +02:00
|
|
|
void storePostSend(PacketPtr pkt);
|
2006-06-09 17:46:35 +02:00
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
/** Completes the store at the specified index. */
|
|
|
|
void completeStore(int store_idx);
|
|
|
|
|
|
|
|
/** Increments the given store index (circular queue). */
|
|
|
|
inline void incrStIdx(int &store_idx);
|
|
|
|
/** Decrements the given store index (circular queue). */
|
|
|
|
inline void decrStIdx(int &store_idx);
|
|
|
|
/** Increments the given load index (circular queue). */
|
|
|
|
inline void incrLdIdx(int &load_idx);
|
|
|
|
/** Decrements the given load index (circular queue). */
|
|
|
|
inline void decrLdIdx(int &load_idx);
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
public:
|
|
|
|
/** Debugging function to dump instructions in the LSQ. */
|
|
|
|
void dumpInsts();
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
private:
|
|
|
|
/** Pointer to the CPU. */
|
2006-06-16 23:08:47 +02:00
|
|
|
O3CPU *cpu;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** Pointer to the IEW stage. */
|
|
|
|
IEW *iewStage;
|
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
/** Pointer to the LSQ. */
|
|
|
|
LSQ *lsq;
|
2006-06-03 00:15:20 +02:00
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
/** Pointer to the dcache port. Used only for sending. */
|
|
|
|
Port *dcachePort;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Derived class to hold any sender state the LSQ needs. */
|
2006-06-06 00:14:39 +02:00
|
|
|
class LSQSenderState : public Packet::SenderState
|
|
|
|
{
|
|
|
|
public:
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Default constructor. */
|
2006-06-06 00:14:39 +02:00
|
|
|
LSQSenderState()
|
|
|
|
: noWB(false)
|
|
|
|
{ }
|
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Instruction who initiated the access to memory. */
|
2006-06-06 00:14:39 +02:00
|
|
|
DynInstPtr inst;
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Whether or not it is a load. */
|
2006-06-06 00:14:39 +02:00
|
|
|
bool isLoad;
|
2006-06-09 22:28:17 +02:00
|
|
|
/** The LQ/SQ index of the instruction. */
|
2006-06-06 00:14:39 +02:00
|
|
|
int idx;
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Whether or not the instruction will need to writeback. */
|
2006-06-06 00:14:39 +02:00
|
|
|
bool noWB;
|
|
|
|
};
|
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Writeback event, specifically for when stores forward data to loads. */
|
2006-06-06 00:14:39 +02:00
|
|
|
class WritebackEvent : public Event {
|
|
|
|
public:
|
|
|
|
/** Constructs a writeback event. */
|
|
|
|
WritebackEvent(DynInstPtr &_inst, PacketPtr pkt, LSQUnit *lsq_ptr);
|
|
|
|
|
|
|
|
/** Processes the writeback event. */
|
|
|
|
void process();
|
|
|
|
|
|
|
|
/** Returns the description of this event. */
|
|
|
|
const char *description();
|
|
|
|
|
|
|
|
private:
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Instruction whose results are being written back. */
|
2006-06-06 00:14:39 +02:00
|
|
|
DynInstPtr inst;
|
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** The packet that would have been sent to memory. */
|
2006-06-06 00:14:39 +02:00
|
|
|
PacketPtr pkt;
|
|
|
|
|
|
|
|
/** The pointer to the LSQ unit that issued the store. */
|
|
|
|
LSQUnit<Impl> *lsqPtr;
|
|
|
|
};
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
public:
|
|
|
|
struct SQEntry {
|
|
|
|
/** Constructs an empty store queue entry. */
|
|
|
|
SQEntry()
|
2007-04-04 00:53:26 +02:00
|
|
|
: inst(NULL), req(NULL), size(0),
|
2006-04-23 00:26:48 +02:00
|
|
|
canWB(0), committed(0), completed(0)
|
2007-04-04 00:53:26 +02:00
|
|
|
{
|
|
|
|
bzero(data, sizeof(data));
|
|
|
|
}
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** Constructs a store queue entry for a given instruction. */
|
|
|
|
SQEntry(DynInstPtr &_inst)
|
2007-04-04 00:53:26 +02:00
|
|
|
: inst(_inst), req(NULL), size(0),
|
2006-04-23 00:26:48 +02:00
|
|
|
canWB(0), committed(0), completed(0)
|
2007-04-04 00:53:26 +02:00
|
|
|
{
|
|
|
|
bzero(data, sizeof(data));
|
|
|
|
}
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** The store instruction. */
|
|
|
|
DynInstPtr inst;
|
2006-06-03 00:15:20 +02:00
|
|
|
/** The request for the store. */
|
|
|
|
RequestPtr req;
|
2006-04-23 00:26:48 +02:00
|
|
|
/** The size of the store. */
|
|
|
|
int size;
|
|
|
|
/** The store data. */
|
2007-04-04 00:53:26 +02:00
|
|
|
char data[sizeof(IntReg)];
|
2006-04-23 00:26:48 +02:00
|
|
|
/** Whether or not the store can writeback. */
|
|
|
|
bool canWB;
|
|
|
|
/** Whether or not the store is committed. */
|
|
|
|
bool committed;
|
|
|
|
/** Whether or not the store is completed. */
|
|
|
|
bool completed;
|
|
|
|
};
|
2006-05-19 21:53:17 +02:00
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
private:
|
|
|
|
/** The LSQUnit thread id. */
|
|
|
|
unsigned lsqID;
|
|
|
|
|
|
|
|
/** The store queue. */
|
|
|
|
std::vector<SQEntry> storeQueue;
|
|
|
|
|
|
|
|
/** The load queue. */
|
|
|
|
std::vector<DynInstPtr> loadQueue;
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
/** The number of LQ entries, plus a sentinel entry (circular queue).
|
|
|
|
* @todo: Consider having var that records the true number of LQ entries.
|
|
|
|
*/
|
2006-04-23 00:26:48 +02:00
|
|
|
unsigned LQEntries;
|
2006-05-19 21:53:17 +02:00
|
|
|
/** The number of SQ entries, plus a sentinel entry (circular queue).
|
|
|
|
* @todo: Consider having var that records the true number of SQ entries.
|
|
|
|
*/
|
2006-04-23 00:26:48 +02:00
|
|
|
unsigned SQEntries;
|
|
|
|
|
|
|
|
/** The number of load instructions in the LQ. */
|
|
|
|
int loads;
|
2006-05-19 21:53:17 +02:00
|
|
|
/** The number of store instructions in the SQ. */
|
2006-04-23 00:26:48 +02:00
|
|
|
int stores;
|
|
|
|
/** The number of store instructions in the SQ waiting to writeback. */
|
|
|
|
int storesToWB;
|
|
|
|
|
|
|
|
/** The index of the head instruction in the LQ. */
|
|
|
|
int loadHead;
|
|
|
|
/** The index of the tail instruction in the LQ. */
|
|
|
|
int loadTail;
|
|
|
|
|
|
|
|
/** The index of the head instruction in the SQ. */
|
|
|
|
int storeHead;
|
2006-05-19 21:53:17 +02:00
|
|
|
/** The index of the first instruction that may be ready to be
|
|
|
|
* written back, and has not yet been written back.
|
2006-04-23 00:26:48 +02:00
|
|
|
*/
|
|
|
|
int storeWBIdx;
|
|
|
|
/** The index of the tail instruction in the SQ. */
|
|
|
|
int storeTail;
|
|
|
|
|
|
|
|
/// @todo Consider moving to a more advanced model with write vs read ports
|
|
|
|
/** The number of cache ports available each cycle. */
|
|
|
|
int cachePorts;
|
|
|
|
|
|
|
|
/** The number of used cache ports in this cycle. */
|
|
|
|
int usedPorts;
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Is the LSQ switched out. */
|
2006-05-04 17:36:20 +02:00
|
|
|
bool switchedOut;
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
//list<InstSeqNum> mshrSeqNums;
|
|
|
|
|
|
|
|
/** Wire to read information from the issue stage time queue. */
|
|
|
|
typename TimeBuffer<IssueStruct>::wire fromIssue;
|
|
|
|
|
|
|
|
/** Whether or not the LSQ is stalled. */
|
|
|
|
bool stalled;
|
|
|
|
/** The store that causes the stall due to partial store to load
|
|
|
|
* forwarding.
|
|
|
|
*/
|
|
|
|
InstSeqNum stallingStoreIsn;
|
|
|
|
/** The index of the above store. */
|
|
|
|
int stallingLoadIdx;
|
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** The packet that needs to be retried. */
|
|
|
|
PacketPtr retryPkt;
|
2006-06-09 17:46:35 +02:00
|
|
|
|
2006-06-09 22:28:17 +02:00
|
|
|
/** Whehter or not a store is blocked due to the memory system. */
|
2006-06-06 00:14:39 +02:00
|
|
|
bool isStoreBlocked;
|
|
|
|
|
2006-05-19 21:53:17 +02:00
|
|
|
/** Whether or not a load is blocked due to the memory system. */
|
2006-04-23 00:26:48 +02:00
|
|
|
bool isLoadBlocked;
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** Has the blocked load been handled. */
|
2006-04-23 00:26:48 +02:00
|
|
|
bool loadBlockedHandled;
|
|
|
|
|
2006-05-31 17:45:02 +02:00
|
|
|
/** The sequence number of the blocked load. */
|
2006-04-23 00:26:48 +02:00
|
|
|
InstSeqNum blockedLoadSeqNum;
|
|
|
|
|
|
|
|
/** The oldest load that caused a memory ordering violation. */
|
|
|
|
DynInstPtr memDepViolator;
|
|
|
|
|
|
|
|
// Will also need how many read/write ports the Dcache has. Or keep track
|
|
|
|
// of that in stage that is one level up, and only call executeLoad/Store
|
|
|
|
// the appropriate number of times.
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Total number of loads forwaded from LSQ stores. */
|
|
|
|
Stats::Scalar<> lsqForwLoads;
|
|
|
|
|
2006-10-02 17:58:09 +02:00
|
|
|
/** Total number of loads ignored due to invalid addresses. */
|
|
|
|
Stats::Scalar<> invAddrLoads;
|
|
|
|
|
|
|
|
/** Total number of squashed loads. */
|
|
|
|
Stats::Scalar<> lsqSquashedLoads;
|
|
|
|
|
|
|
|
/** Total number of responses from the memory system that are
|
|
|
|
* ignored due to the instruction already being squashed. */
|
|
|
|
Stats::Scalar<> lsqIgnoredResponses;
|
|
|
|
|
|
|
|
/** Tota number of memory ordering violations. */
|
|
|
|
Stats::Scalar<> lsqMemOrderViolation;
|
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Total number of squashed stores. */
|
|
|
|
Stats::Scalar<> lsqSquashedStores;
|
|
|
|
|
|
|
|
/** Total number of software prefetches ignored due to invalid addresses. */
|
|
|
|
Stats::Scalar<> invAddrSwpfs;
|
2006-05-04 17:36:20 +02:00
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Ready loads blocked due to partial store-forwarding. */
|
|
|
|
Stats::Scalar<> lsqBlockedLoads;
|
2006-05-04 17:36:20 +02:00
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Number of loads that were rescheduled. */
|
|
|
|
Stats::Scalar<> lsqRescheduledLoads;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
/** Number of times the LSQ is blocked due to the cache. */
|
|
|
|
Stats::Scalar<> lsqCacheBlocked;
|
2006-05-04 17:36:20 +02:00
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
public:
|
|
|
|
/** Executes the load at the given index. */
|
|
|
|
template <class T>
|
2006-06-03 00:15:20 +02:00
|
|
|
Fault read(Request *req, T &data, int load_idx);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** Executes the store at the given index. */
|
|
|
|
template <class T>
|
2006-06-03 00:15:20 +02:00
|
|
|
Fault write(Request *req, T &data, int store_idx);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
/** Returns the index of the head load instruction. */
|
|
|
|
int getLoadHead() { return loadHead; }
|
|
|
|
/** Returns the sequence number of the head load instruction. */
|
|
|
|
InstSeqNum getLoadHeadSeqNum()
|
|
|
|
{
|
|
|
|
if (loadQueue[loadHead]) {
|
|
|
|
return loadQueue[loadHead]->seqNum;
|
|
|
|
} else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the index of the head store instruction. */
|
|
|
|
int getStoreHead() { return storeHead; }
|
|
|
|
/** Returns the sequence number of the head store instruction. */
|
|
|
|
InstSeqNum getStoreHeadSeqNum()
|
|
|
|
{
|
|
|
|
if (storeQueue[storeHead].inst) {
|
|
|
|
return storeQueue[storeHead].inst->seqNum;
|
|
|
|
} else {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns whether or not the LSQ unit is stalled. */
|
|
|
|
bool isStalled() { return stalled; }
|
|
|
|
};
|
|
|
|
|
|
|
|
template <class Impl>
|
|
|
|
template <class T>
|
|
|
|
Fault
|
2006-06-03 00:15:20 +02:00
|
|
|
LSQUnit<Impl>::read(Request *req, T &data, int load_idx)
|
2006-04-23 00:26:48 +02:00
|
|
|
{
|
2006-06-03 00:15:20 +02:00
|
|
|
DynInstPtr load_inst = loadQueue[load_idx];
|
|
|
|
|
|
|
|
assert(load_inst);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-06-03 00:15:20 +02:00
|
|
|
assert(!load_inst->isExecuted());
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
// Make sure this isn't an uncacheable access
|
|
|
|
// A bit of a hackish way to get uncached accesses to work only if they're
|
|
|
|
// at the head of the LSQ and are ready to commit (at the head of the ROB
|
|
|
|
// too).
|
2006-10-08 23:48:24 +02:00
|
|
|
if (req->isUncacheable() &&
|
2006-06-14 19:12:41 +02:00
|
|
|
(load_idx != loadHead || !load_inst->isAtCommit())) {
|
2006-06-03 00:15:20 +02:00
|
|
|
iewStage->rescheduleMemInst(load_inst);
|
2006-06-14 04:35:05 +02:00
|
|
|
++lsqRescheduledLoads;
|
2007-03-23 16:33:08 +01:00
|
|
|
|
|
|
|
// Must delete request now that it wasn't handed off to
|
|
|
|
// memory. This is quite ugly. @todo: Figure out the proper
|
|
|
|
// place to really handle request deletes.
|
|
|
|
delete req;
|
2006-04-23 00:26:48 +02:00
|
|
|
return TheISA::genMachineCheckFault();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check the SQ for any previous stores that might lead to forwarding
|
2006-06-03 00:15:20 +02:00
|
|
|
int store_idx = load_inst->sqIdx;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
int store_size = 0;
|
|
|
|
|
|
|
|
DPRINTF(LSQUnit, "Read called, load idx: %i, store idx: %i, "
|
|
|
|
"storeHead: %i addr: %#x\n",
|
2006-06-03 00:15:20 +02:00
|
|
|
load_idx, store_idx, storeHead, req->getPaddr());
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-10-08 23:48:24 +02:00
|
|
|
if (req->isLocked()) {
|
2006-10-23 20:00:07 +02:00
|
|
|
// Disable recording the result temporarily. Writing to misc
|
|
|
|
// regs normally updates the result, but this is not the
|
|
|
|
// desired behavior when handling store conditionals.
|
|
|
|
load_inst->recordResult = false;
|
|
|
|
TheISA::handleLockedRead(load_inst.get(), req);
|
|
|
|
load_inst->recordResult = true;
|
2006-04-23 00:26:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
while (store_idx != -1) {
|
|
|
|
// End once we've reached the top of the LSQ
|
|
|
|
if (store_idx == storeWBIdx) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Move the index to one younger
|
|
|
|
if (--store_idx < 0)
|
|
|
|
store_idx += SQEntries;
|
|
|
|
|
|
|
|
assert(storeQueue[store_idx].inst);
|
|
|
|
|
|
|
|
store_size = storeQueue[store_idx].size;
|
|
|
|
|
|
|
|
if (store_size == 0)
|
|
|
|
continue;
|
2007-03-23 16:33:08 +01:00
|
|
|
else if (storeQueue[store_idx].inst->uncacheable())
|
|
|
|
continue;
|
|
|
|
|
|
|
|
assert(storeQueue[store_idx].inst->effAddrValid);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
// Check if the store data is within the lower and upper bounds of
|
|
|
|
// addresses that the request needs.
|
|
|
|
bool store_has_lower_limit =
|
2006-06-03 00:15:20 +02:00
|
|
|
req->getVaddr() >= storeQueue[store_idx].inst->effAddr;
|
2006-04-23 00:26:48 +02:00
|
|
|
bool store_has_upper_limit =
|
2006-06-03 00:15:20 +02:00
|
|
|
(req->getVaddr() + req->getSize()) <=
|
|
|
|
(storeQueue[store_idx].inst->effAddr + store_size);
|
2006-04-23 00:26:48 +02:00
|
|
|
bool lower_load_has_store_part =
|
2006-06-03 00:15:20 +02:00
|
|
|
req->getVaddr() < (storeQueue[store_idx].inst->effAddr +
|
2006-04-23 00:26:48 +02:00
|
|
|
store_size);
|
|
|
|
bool upper_load_has_store_part =
|
2006-06-03 00:15:20 +02:00
|
|
|
(req->getVaddr() + req->getSize()) >
|
|
|
|
storeQueue[store_idx].inst->effAddr;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
// If the store's data has all of the data needed, we can forward.
|
2007-03-23 16:33:08 +01:00
|
|
|
if ((store_has_lower_limit && store_has_upper_limit)) {
|
2006-05-19 21:53:17 +02:00
|
|
|
// Get shift amount for offset into the store's data.
|
2006-06-03 00:15:20 +02:00
|
|
|
int shift_amt = req->getVaddr() & (store_size - 1);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2007-04-04 00:53:26 +02:00
|
|
|
memcpy(&data, storeQueue[store_idx].data + shift_amt, sizeof(T));
|
2006-12-16 15:35:09 +01:00
|
|
|
|
2006-06-03 00:15:20 +02:00
|
|
|
assert(!load_inst->memData);
|
|
|
|
load_inst->memData = new uint8_t[64];
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2007-04-04 00:53:26 +02:00
|
|
|
memcpy(load_inst->memData,
|
|
|
|
storeQueue[store_idx].data + shift_amt, req->getSize());
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
DPRINTF(LSQUnit, "Forwarding from store idx %i to load to "
|
|
|
|
"addr %#x, data %#x\n",
|
2006-06-09 17:46:35 +02:00
|
|
|
store_idx, req->getVaddr(), data);
|
2006-06-06 00:14:39 +02:00
|
|
|
|
2007-02-07 19:53:37 +01:00
|
|
|
PacketPtr data_pkt = new Packet(req, MemCmd::ReadReq,
|
|
|
|
Packet::Broadcast);
|
2006-06-06 00:14:39 +02:00
|
|
|
data_pkt->dataStatic(load_inst->memData);
|
|
|
|
|
|
|
|
WritebackEvent *wb = new WritebackEvent(load_inst, data_pkt, this);
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
// We'll say this has a 1 cycle load-store forwarding latency
|
|
|
|
// for now.
|
|
|
|
// @todo: Need to make this a parameter.
|
|
|
|
wb->schedule(curTick);
|
2006-06-06 00:14:39 +02:00
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
++lsqForwLoads;
|
2006-04-23 00:26:48 +02:00
|
|
|
return NoFault;
|
|
|
|
} else if ((store_has_lower_limit && lower_load_has_store_part) ||
|
|
|
|
(store_has_upper_limit && upper_load_has_store_part) ||
|
|
|
|
(lower_load_has_store_part && upper_load_has_store_part)) {
|
|
|
|
// This is the partial store-load forwarding case where a store
|
|
|
|
// has only part of the load's data.
|
|
|
|
|
|
|
|
// If it's already been written back, then don't worry about
|
|
|
|
// stalling on it.
|
|
|
|
if (storeQueue[store_idx].completed) {
|
2007-03-23 16:33:08 +01:00
|
|
|
panic("Should not check one of these");
|
2006-04-23 00:26:48 +02:00
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Must stall load and force it to retry, so long as it's the oldest
|
|
|
|
// load that needs to do so.
|
|
|
|
if (!stalled ||
|
|
|
|
(stalled &&
|
2006-06-03 00:15:20 +02:00
|
|
|
load_inst->seqNum <
|
2006-04-23 00:26:48 +02:00
|
|
|
loadQueue[stallingLoadIdx]->seqNum)) {
|
|
|
|
stalled = true;
|
|
|
|
stallingStoreIsn = storeQueue[store_idx].inst->seqNum;
|
|
|
|
stallingLoadIdx = load_idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Tell IQ/mem dep unit that this instruction will need to be
|
|
|
|
// rescheduled eventually
|
2006-06-03 00:15:20 +02:00
|
|
|
iewStage->rescheduleMemInst(load_inst);
|
2006-07-19 21:28:02 +02:00
|
|
|
iewStage->decrWb(load_inst->seqNum);
|
2007-03-23 16:33:08 +01:00
|
|
|
load_inst->clearIssued();
|
2006-06-14 04:35:05 +02:00
|
|
|
++lsqRescheduledLoads;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
// Do not generate a writeback event as this instruction is not
|
|
|
|
// complete.
|
|
|
|
DPRINTF(LSQUnit, "Load-store forwarding mis-match. "
|
|
|
|
"Store idx %i to load addr %#x\n",
|
2006-06-03 00:15:20 +02:00
|
|
|
store_idx, req->getVaddr());
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2007-03-23 16:33:08 +01:00
|
|
|
// Must delete request now that it wasn't handed off to
|
|
|
|
// memory. This is quite ugly. @todo: Figure out the
|
|
|
|
// proper place to really handle request deletes.
|
|
|
|
delete req;
|
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
return NoFault;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If there's no forwarding case, then go access memory
|
2006-07-13 19:12:51 +02:00
|
|
|
DPRINTF(LSQUnit, "Doing memory access for inst [sn:%lli] PC %#x\n",
|
2006-06-03 00:15:20 +02:00
|
|
|
load_inst->seqNum, load_inst->readPC());
|
2006-05-19 21:53:17 +02:00
|
|
|
|
2006-06-03 00:15:20 +02:00
|
|
|
assert(!load_inst->memData);
|
|
|
|
load_inst->memData = new uint8_t[64];
|
2006-04-23 00:26:48 +02:00
|
|
|
|
|
|
|
++usedPorts;
|
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
// if we the cache is not blocked, do cache access
|
|
|
|
if (!lsq->cacheBlocked()) {
|
2006-10-10 01:14:14 +02:00
|
|
|
PacketPtr data_pkt =
|
2007-02-07 19:53:37 +01:00
|
|
|
new Packet(req, MemCmd::ReadReq, Packet::Broadcast);
|
2006-10-10 01:14:14 +02:00
|
|
|
data_pkt->dataStatic(load_inst->memData);
|
|
|
|
|
|
|
|
LSQSenderState *state = new LSQSenderState;
|
|
|
|
state->isLoad = true;
|
|
|
|
state->idx = load_idx;
|
|
|
|
state->inst = load_inst;
|
|
|
|
data_pkt->senderState = state;
|
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
if (!dcachePort->sendTiming(data_pkt)) {
|
2006-10-10 01:14:14 +02:00
|
|
|
Packet::Result result = data_pkt->result;
|
|
|
|
|
|
|
|
// Delete state and data packet because a load retry
|
|
|
|
// initiates a pipeline restart; it does not retry.
|
|
|
|
delete state;
|
2007-03-23 16:33:08 +01:00
|
|
|
delete data_pkt->req;
|
2006-10-10 01:14:14 +02:00
|
|
|
delete data_pkt;
|
|
|
|
|
2007-03-23 16:33:08 +01:00
|
|
|
req = NULL;
|
|
|
|
|
2006-10-10 01:14:14 +02:00
|
|
|
if (result == Packet::BadAddress) {
|
2006-10-08 06:53:41 +02:00
|
|
|
return TheISA::genMachineCheckFault();
|
|
|
|
}
|
|
|
|
|
2006-07-13 19:12:51 +02:00
|
|
|
// If the access didn't succeed, tell the LSQ by setting
|
|
|
|
// the retry thread id.
|
|
|
|
lsq->setRetryTid(lsqID);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// If the cache was blocked, or has become blocked due to the access,
|
|
|
|
// handle it.
|
|
|
|
if (lsq->cacheBlocked()) {
|
2007-03-23 16:33:08 +01:00
|
|
|
if (req)
|
|
|
|
delete req;
|
|
|
|
|
2006-06-14 04:35:05 +02:00
|
|
|
++lsqCacheBlocked;
|
2006-08-16 21:56:22 +02:00
|
|
|
|
|
|
|
iewStage->decrWb(load_inst->seqNum);
|
2006-06-03 00:15:20 +02:00
|
|
|
// There's an older load that's already going to squash.
|
|
|
|
if (isLoadBlocked && blockedLoadSeqNum < load_inst->seqNum)
|
|
|
|
return NoFault;
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-06-03 00:15:20 +02:00
|
|
|
// Record that the load was blocked due to memory. This
|
|
|
|
// load will squash all instructions after it, be
|
|
|
|
// refetched, and re-executed.
|
|
|
|
isLoadBlocked = true;
|
|
|
|
loadBlockedHandled = false;
|
|
|
|
blockedLoadSeqNum = load_inst->seqNum;
|
|
|
|
// No fault occurred, even though the interface is blocked.
|
|
|
|
return NoFault;
|
|
|
|
}
|
2006-04-23 00:26:48 +02:00
|
|
|
|
2006-06-03 00:15:20 +02:00
|
|
|
return NoFault;
|
2006-04-23 00:26:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class Impl>
|
|
|
|
template <class T>
|
|
|
|
Fault
|
2006-06-03 00:15:20 +02:00
|
|
|
LSQUnit<Impl>::write(Request *req, T &data, int store_idx)
|
2006-04-23 00:26:48 +02:00
|
|
|
{
|
|
|
|
assert(storeQueue[store_idx].inst);
|
|
|
|
|
|
|
|
DPRINTF(LSQUnit, "Doing write to store idx %i, addr %#x data %#x"
|
|
|
|
" | storeHead:%i [sn:%i]\n",
|
2006-06-03 00:15:20 +02:00
|
|
|
store_idx, req->getPaddr(), data, storeHead,
|
2006-04-23 00:26:48 +02:00
|
|
|
storeQueue[store_idx].inst->seqNum);
|
2006-05-19 21:53:17 +02:00
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
storeQueue[store_idx].req = req;
|
|
|
|
storeQueue[store_idx].size = sizeof(T);
|
2007-04-04 00:53:26 +02:00
|
|
|
assert(sizeof(T) <= sizeof(storeQueue[store_idx].data));
|
|
|
|
|
|
|
|
T gData = htog(data);
|
|
|
|
memcpy(storeQueue[store_idx].data, &gData, sizeof(T));
|
2006-05-19 21:53:17 +02:00
|
|
|
|
2006-04-23 00:26:48 +02:00
|
|
|
// This function only writes the data to the store queue, so no fault
|
|
|
|
// can happen here.
|
|
|
|
return NoFault;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // __CPU_O3_LSQ_UNIT_HH__
|