gem5/src/arch/mips/isa_traits.hh

203 lines
5.8 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Korey Sewell
*/
#ifndef __ARCH_MIPS_ISA_TRAITS_HH__
#define __ARCH_MIPS_ISA_TRAITS_HH__
#include "arch/mips/constants.hh"
#include "arch/mips/types.hh"
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
#include "arch/mips/regfile/regfile.hh"
#include "arch/mips/faults.hh"
#include "arch/mips/utility.hh"
#include "base/misc.hh"
#include "config/full_system.hh"
#include "sim/byteswap.hh"
#include "sim/host.hh"
#include "sim/faults.hh"
#include <vector>
class FastCPU;
class FullCPU;
class Checkpoint;
class ExecContext;
namespace LittleEndianGuest {};
#define TARGET_MIPS
class StaticInst;
class StaticInstPtr;
namespace MIPS34K {
int DTB_ASN_ASN(uint64_t reg);
int ITB_ASN_ASN(uint64_t reg);
};
#if !FULL_SYSTEM
class SyscallReturn {
public:
template <class T>
SyscallReturn(T v, bool s)
{
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
retval = (uint32_t)v;
success = s;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
Finally MIPS does hello world! arch/mips/isa/bitfields.isa: add RS_SRL bitfield ...these must be set to 0 for a SRL instruction arch/mips/isa/decoder.isa: Make unimplemented instructions Fail instead of just Warn Edits to SRA & SRAV instructions Implement CFC1 instructions Unaligned Memory Access Support (Maybe Not fully functional yet) Enforce a more strict decode policy (in terms of different bitfields set to 0 on certain instructions) arch/mips/isa/formats/branch.isa: Fix disassembly arch/mips/isa/formats/int.isa: Add sign extend Immediate and zero extend Immediate to Int class. Probably a bit unnecessary in the long run since these manipulations could be done in the actually instruction instead of keep a int value arch/mips/isa/formats/mem.isa: Comment/Remove out split-memory access code... revisit this after SimpleCPU works arch/mips/isa/formats/unimp.isa: Add inst2string function to Unimplemented panic. PRints out the instruction binary to help in debuggin arch/mips/isa/formats/unknown.isa: define inst2string function , use in unknown disassembly and panic function arch/mips/isa/operands.isa: Make "Mem" default to a unsigned word since this is MIPS32 arch/mips/isa_traits.hh: change return values to 32 instead of 64 arch/mips/linux_process.cc: assign some syscalls to the right functions cpu/static_inst.hh: more debug functions for MIPS (these will be move to the mips directory soon) mem/page_table.cc: mem/page_table.hh: toward a better implementation for unaligned memory access mem/request.hh: NO ALIGN FAULT flag added to support unaligned memory access sim/syscall_emul.cc: additional SyscallVerbose comments --HG-- extra : convert_revision : 1987d80c9f4ede507f1f0148435e0bee97d2428c
2006-04-10 18:23:17 +02:00
retval = (uint32_t)v;
}
~SyscallReturn() {}
SyscallReturn& operator=(const SyscallReturn& s) {
retval = s.retval;
success = s.success;
return *this;
}
bool successful() { return success; }
uint64_t value() { return retval; }
private:
uint64_t retval;
bool success;
};
#endif
namespace MipsISA
{
Enable register windows. arch/alpha/isa_traits.hh: arch/mips/isa_traits.cc: Turned the integer register file into a class instead of a typedef to an array. arch/alpha/regfile.hh: Changed the integer register file into a class instead of a typedef to an array. Also put the parts of the register file, ie the int, float, and misc register files, pc, npc, and nnpc, behind accessor functions. Added a changeContext function, and ContextParam and ContextVal types, so that things like the register window can be changed through call backs. arch/mips/isa_traits.hh: Turned the integer register file into a class instead of a typedef to an array. Also moved a "using namespace" into the namespace definition. arch/sparc/isa_traits.hh: Turned the integer register file into a class instead of a typedef to an array. Also "fixed" the max number of src and dest regs. They may need to be even larger. arch/sparc/regfile.hh: Changed the integer register file into a class instead of a typedef to an array. Also put the parts of the register file, ie the int, float, and misc register files, pc, npc, and nnpc, behind accessor functions. Added a changeContext function, and ContextParam and ContextVal types, so that things like the register window can be changed through call backs. Created setCWP and setAltGlobals functions for the IntRegFile. cpu/cpu_exec_context.hh: Used the accessor functions for the register file, and added a changeRegFileContext function to call back into the RegFile. Used the RegFile clear function rather than memsetting it to 0. cpu/exec_context.hh: Added the changeRegFileContext function. cpu/exetrace.cc: Use the TheISA::NumIntRegs constant, and use readReg now that the integer register file is a class instead of an array. cpu/exetrace.hh: Get the address of the regs object, now that it isn't an array. --HG-- extra : convert_revision : ea2dd81be1c2e66b3c684af319eb58f8a77fd49c
2006-04-06 20:47:03 +02:00
using namespace LittleEndianGuest;
static inline void setSyscallReturn(SyscallReturn return_value, RegFile *regs)
{
if (return_value.successful()) {
// no error
regs->setIntReg(SyscallSuccessReg, 0);
regs->setIntReg(ReturnValueReg1, return_value.value());
} else {
// got an error, return details
regs->setIntReg(SyscallSuccessReg, (IntReg) -1);
regs->setIntReg(ReturnValueReg1, -return_value.value());
Enable register windows. arch/alpha/isa_traits.hh: arch/mips/isa_traits.cc: Turned the integer register file into a class instead of a typedef to an array. arch/alpha/regfile.hh: Changed the integer register file into a class instead of a typedef to an array. Also put the parts of the register file, ie the int, float, and misc register files, pc, npc, and nnpc, behind accessor functions. Added a changeContext function, and ContextParam and ContextVal types, so that things like the register window can be changed through call backs. arch/mips/isa_traits.hh: Turned the integer register file into a class instead of a typedef to an array. Also moved a "using namespace" into the namespace definition. arch/sparc/isa_traits.hh: Turned the integer register file into a class instead of a typedef to an array. Also "fixed" the max number of src and dest regs. They may need to be even larger. arch/sparc/regfile.hh: Changed the integer register file into a class instead of a typedef to an array. Also put the parts of the register file, ie the int, float, and misc register files, pc, npc, and nnpc, behind accessor functions. Added a changeContext function, and ContextParam and ContextVal types, so that things like the register window can be changed through call backs. Created setCWP and setAltGlobals functions for the IntRegFile. cpu/cpu_exec_context.hh: Used the accessor functions for the register file, and added a changeRegFileContext function to call back into the RegFile. Used the RegFile clear function rather than memsetting it to 0. cpu/exec_context.hh: Added the changeRegFileContext function. cpu/exetrace.cc: Use the TheISA::NumIntRegs constant, and use readReg now that the integer register file is a class instead of an array. cpu/exetrace.hh: Get the address of the regs object, now that it isn't an array. --HG-- extra : convert_revision : ea2dd81be1c2e66b3c684af319eb58f8a77fd49c
2006-04-06 20:47:03 +02:00
}
}
StaticInstPtr decodeInst(ExtMachInst);
static inline ExtMachInst
makeExtMI(MachInst inst, const uint64_t &pc) {
#if FULL_SYSTEM
ExtMachInst ext_inst = inst;
if (pc && 0x1)
return ext_inst|=(static_cast<ExtMachInst>(pc & 0x1) << 32);
else
return ext_inst;
#else
return ExtMachInst(inst);
#endif
}
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
void zeroRegisters(XC *xc);
const Addr MaxAddr = (Addr)-1;
void copyRegs(ExecContext *src, ExecContext *dest);
uint64_t fpConvert(double fp_val, ConvertType cvt_type);
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
double roundFP(double val, int digits);
double truncFP(double val);
FP programs are back to running... Condition Codes can be read and set... Special Regs (Hi,Lo,FCSR) are now added to the operands for use in decoder.isa. Now it's back to just debugging execution of code for the release (those unaligned memory access instruction pairs are still quite the pain i might add) arch/mips/isa_traits.hh: declare functions for .cc file arch/mips/isa_traits.cc: delete unnecessary overloaded functions implement condition code functions implement round function arch/mips/isa/base.isa: remove R31 constant... define in the operands.isa file instead arch/mips/isa/decoder.isa: wholesale changes once again to FP. Now the FP Condition Codes are implemented and the FP programs can run and complete to finish. Use isnan() instead of my unorderedFP() function Also, we now access special regs such as HI,LO,FCSR,etc. just like we do any other reg. operand arch/mips/isa/operands.isa: add more operands for special control regs in int and FP regfiles arch/mips/isa/formats/branch.isa: use R31 instead of r31 arch/mips/isa/formats/fp.isa: use MakeCCVector to set Condition Codes in FCSR arch/mips/regfile/float_regfile.hh: treat control regs like any other reg. Just Index them after the regular architectural registers arch/mips/regfile/int_regfile.hh: treat hi,lo as regular int. regs w/special indexing arch/mips/regfile/regfile.hh: no longer need for special register accesses with their own function. --HG-- rename : arch/mips/regfile.hh => arch/mips/regfile/regfile.hh extra : convert_revision : 5d2f8fdb59606de2b2e9db3e0a085240561e479e
2006-05-12 08:57:32 +02:00
bool getFPConditionCode(uint32_t fcsr_reg, int cc);
uint32_t makeCCVector(uint32_t fcsr, int num, bool val);
// Machine operations
void saveMachineReg(AnyReg &savereg, const RegFile &reg_file,
int regnum);
void restoreMachineReg(RegFile &regs, const AnyReg &reg,
int regnum);
#if 0
static void serializeSpecialRegs(const Serializable::Proxy &proxy,
const RegFile &regs);
static void unserializeSpecialRegs(const IniFile *db,
const std::string &category,
ConfigNode *node,
RegFile &regs);
#endif
static inline Addr alignAddress(const Addr &addr,
unsigned int nbytes) {
return (addr & ~(nbytes - 1));
}
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr) {
return addr;
}
static inline Addr fetchPCToRealPC(const Addr &addr) {
return addr;
}
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize() {
return sizeof(MachInst);
}
static inline MachInst makeRegisterCopy(int dest, int src) {
panic("makeRegisterCopy not implemented");
return 0;
}
};
#if FULL_SYSTEM
#include "arch/mips/mips34k.hh"
#endif
using namespace MipsISA;
#endif // __ARCH_MIPS_ISA_TRAITS_HH__