Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
natively (labels, memory ranges, memory mapped ranges).
- For further information:
http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants
Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
calls.
- Better input checking in syslib: check for page alignment when creating
memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
- local APIC timer used as the source of time
- PIC is still used as the hw interrupt controller as we don't have
enough info without ACPI or MPS to set up IO APICs
- remapping of APIC when switching paging on, uses the new mechanism
to tell VM what phys areas to map in kernel's virtual space
- one more step to SMP
based on code by Arun C.
- idle task becomes a pseudo task which is never scheduled. It is never put on
any run queue and never enters userspace. An entry for this task still remains
in the process table for time accounting
- Instead of panicing if there is not process to schedule, pick_proc() returns
NULL which is a signal to put the cpu in an idle state and set everything in
such a way that after receiving and interrupt it looks like idle task was
preempted
- idle task is set non-preemptible to avoid handling in the timer interrupt code
which make userspace scheduling simpler as idle task does not need to be
handled as a special case.
- after a trap to kernel, the code automatically switches to kernel
stack, in the future local to the CPU
- k_reenter variable replaced by a test whether the CS is kernel cs or
not. The information is passed further if needed. Removes a global
variable which would need to be cpu local
- no need for global variables describing the exception or trap
context. This information is kept on stack and a pointer to this
structure is passed to the C code as a single structure
- removed loadedcr3 variable and its use replaced by reading the %cr3
register
- no need to redisable interrupts in restart() as they are already
disabled.
- unified handling of traps that push and don't push errorcode
- removed save() function as the process context is not saved directly
to process table but saved as required by the trap code. Essentially
it means that save() code is inlined everywhere not only in the
exception handling routine
- returning from syscall is more arch independent - it sets the retger
in C
- top of the x86 stack contains the current CPU id and pointer to the
currently scheduled process (the one right interrupted) so the mode
switch code can find where to save the context without need to use
proc_ptr which will be cpu local in the future and therefore
difficult to access in assembler and expensive to access in general
- some more clean up of level0 code. No need to read-back the argument
passed in
%eax from the proc structure. The mode switch code does not clobber
%the general registers and hence we can just call what is in %eax
- many assebly macros in sconst.h as they will be reused by the apic
assembly
- preemption handled in the clock timer interrupt handler, not in the clock task
- more achitecture independent clock timer handling code
- smp ready as each CPU can have its own timer
- the PIC master and slave irq handlers don't pass the irq hook pointer but just
the irq number. It gives a little bit more information to the C handler as the
irq number is not lost
- the irq code path is more achitecture independent. i386 hw interrupts are
called irq and whereever the code is arch independent enough hw_intr_
functions are called to mask/unmask interrupts
- the legacy PIC is not the only possible interrupt controller in the x86 world,
therefore the intr_(un)mask functions were renamed to signal their
functionality explicitly. APIC will add their own.
- masking and unmasking PIC interrupt lines is removed from assembler and all
the functionality is rewriten in C and moved to i8259.c
- interrupt handlers have to unmask the interrupt line if all irq handlers are
done. Assembler does not do it anymore
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
AMF_NOREPLY senda() flag
DETAILS
Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
running while modifying its process structure
Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
protocol message
o Detached debugger signals from general signal logic and from being
blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
are pending
o Fixed wait test for tracer, which was returning for children that were
not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG
Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
structure
o Removed T_STOP ptrace request again, as it does not help implementing
debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)
Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
#define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
revealed RS-PM-VFS race condition triangle until VFS is asynchronous
System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
signal set, rather than just the POSIX subset
Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
structure clearer
o Fixed setpriority() being able to put to sleep processes using an
invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there
Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code
THINGS OF POSSIBLE INTEREST
o It should now be possible to run PM at any priority, even lower than
user processes
o No assumptions are made about communication speed between PM and VFS,
although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
- a better name for architecture specific init function
- some of x86 init code must execute in protected mode
- prot_init() removed from this function and still called in cstart() Imho this
should be called from the architecture specific assembly not cstart. cstart
perform Minix monitor specific tasks and will be touched once another
bootloader is in use, e.g. booting via tftp, therefore we keep it as is for
now.
- this is a backport from the SMP code which requires this. Merging will be simpler
Kernel:
o Remove s_ipc_sendrec, instead using s_ipc_to for all send primitives
o Centralize s_ipc_to bit manipulation,
- disallowing assignment of bits pointing to unused priv structs;
- preventing send-to-self by not setting bit for own priv struct;
- preserving send mask matrix symmetry in all cases
o Add IPC send mask checks to SENDA, which were missing entirely somehow
o Slightly improve IPC stats accounting for SENDA
o Remove SYSTEM from user processes' send mask
o Half-fix the dependency between boot image order and process numbers,
- correcting the table order of the boot processes;
- documenting the order requirement needed for proper send masks;
- warning at boot time if the order is violated
RS:
o Add support in /etc/drivers.conf for servers that talk to user processes,
- disallowing IPC to user processes if no "ipc" field is present
- adding a special "USER" label to explicitly allow IPC to user processes
o Always apply IPC masks when specified; remove -i flag from service(8)
o Use kernel send mask symmetry to delay adding IPC permissions for labels
that do not exist yet, adding them to that label's process upon creation
o Add VM to ipc permissions list for rtl8139 and fxp in drivers.conf
Left to future fixes:
o Removal of the table order vs process numbers dependency altogether,
possibly using per-process send list structures as used for SYSTEM calls
o Proper assignment of send masks to boot processes;
some of the assigned (~0) masks are much wider than necessary
o Proper assignment of IPC send masks for many more servers in drivers.conf
o Removal of the debugging warning about the now legitimate case where RS's
add_forward_ipc cannot find the IPC destination's label yet
now used for printing diagnostic messages through the kernel message
buffer. this lets processes print diagnostics without sending messages
to tty and log directly, simplifying the message protocol a lot and
reducing difficulties with deadlocks and other situations in which
diagnostics are blackholed (e.g. grants don't work). this makes
DIAGNOSTICS(_S), ASYN_DIAGNOSTICS and DIAG_REPL obsolete, although tty
and log still accept the codes for 'old' binaries. This also simplifies
diagnostics in several servers and drivers - only tty needs its own
kputc() now.
. simplifications in vfs, and some effort to get the vnode references
right (consistent) even during shutdown. m_mounted_on is now NULL
for root filesystems (!) (the original and new root), a less awkward
special case than 'm_mounted_on == m_root_node'. root now has exactly
one reference, to root, if no files are open, just like all other
filesystems. m_driver_e is unused.
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.
. kernel does not program the interrupt controller directly, do any
other architecture-dependent operations, or contain assembly any more,
but uses architecture-dependent functions in arch/$(ARCH)/.
. architecture-dependent constants and types defined in arch/$(ARCH)/include.
. <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
architecture-independent functions.
. int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
and live in arch/i386/do_* now.
. i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
If 86 support is to return, it should be a new architecture.
. prototypes for the architecture-dependent functions defined in
kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
. /etc/make.conf included in makefiles and shell scripts that need to
know the building architecture; it defines ARCH=<arch>, currently only
i386.
. some basic per-architecture build support outside of the kernel (lib)
. in clock.c, only dequeue a process if it was ready
. fixes for new include files
files deleted:
. mpx/klib.s - only for choosing between mpx/klib86 and -386
. klib86.s - only for 86
i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
. mpx386.s (entry point)
. klib386.s
. sconst.h
. exception.c
. protect.c
. protect.h
. i8269.c
instance numbers, encoded and decoded using macros in <minix/endpoint.h>.
proc number -> endpoint migration
. proc_nr in the interrupt hook is now an endpoint, proc_nr_e.
. m_source for messages and notifies is now an endpoint, instead of
proc number.
. isokendpt() converts an endpoint to a process number, returns
success (but fails if the process number is out of range, the
process slot is not a living process, or the given endpoint
number does not match the endpoint number in the process slot,
indicating an old process).
. okendpt() is the same as isokendpt(), but panic()s if the conversion
fails. This is mainly used for decoding message.m_source endpoints,
and other endpoint numbers in kernel data structures, which should
always be correct.
. if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt()
get passed the __FILE__ and __LINE__ of the calling lines, and
print messages about what is wrong with the endpoint number
(out of range proc, empty proc, or inconsistent endpoint number),
with the caller, making finding where the conversion failed easy
without having to include code for every call to print where things
went wrong. Sometimes this is harmless (wrong arg to a kernel call),
sometimes it's a fatal internal inconsistency (bogus m_source).
. some process table fields have been appended an _e to indicate it's
become and endpoint.
. process endpoint is stored in p_endpoint, without generation number.
it turns out the kernel never needs the generation number, except
when fork()ing, so it's decoded then.
. kernel calls all take endpoints as arguments, not proc numbers.
the one exception is sys_fork(), which needs to know in which slot
to put the child.
TTY: select and revive with new notify and FS call back;
kernel: removed old notify code; removed ugly prepare_shutdown timer
kputc: don't send to FS if PRINTF_PROC fails
- reinstalled priority changing, now in sched() and unready()
- reinstalled check on message buffer in sys_call()
- reinstalled check in send masks in sys_call()
- changed do_fork() to get new privilege structure for SYS_PROCs
- removed some processes from boot image---will be dynamically started later
sys_privctl() call to dynamically start servers and drivers.
- Shutdown sequence slightly adjusted: called as watchdog timer to let the
busy sys_abort() call from the PM return first.
- Changed umap_bios() to have more restrictive check: BIOS memory is now
allowed in BIOS_MEM_BEGIN to END (interrupt vectors) and BASE_MEM_TOP
to UPPER_MEM_END. Hopefully this keeps QEMU and Bochs happy.
- fixed bug that caused IDLE to panic (irq hook inconsistency);
- kprintf() now accepts multiple arguments; moved to utility.c;
- prepare_shutdown() signals system processes with SIGKSTOP;
- phys_fill() renamed to phys_memset(), argument order changed;
- kmemset() removed in favor of phys_kmemset();
- kstrncpy() removed in favor of phys_copy();
- katoi, kstrncmp replaced by normal library procedure again;
- rm_irq_handler() interface changed (simply pass hook pointer);
that passes signal map along. This mechanisms is also used for nonuser signals
like SIGKMESS, SIGKSTOP, SIGKSIG.
Revised comments of many system call handlers. Renamed setpriority to nice.
New configuration header file to include/ exclude functionality.
Extracted privileged features from struct proc and create new struct priv.
Renamed various system calls for readability.
copied into was the same size as the source string - it will keep on
filling with zeroes forever. This was a signed/unsigned bug, fixed by
making the kstrncpy argument ssize_t instead of size_t. This bug was
triggered by Chris Young <teddga@earthlink.net>, by dazzling coincedence -
changing OS_VERSION into something with one more character (exactly the
same size as the buffer in the kinfo struct).
Also noticed that the kstrncpy() call didn't null-terminate the strings
if necessary, also fixed.
- current and maximum priority per process;
- quantum size and current ticks left per process;
- max number of full quantums in a row allow
(otherwise current priority is decremented)
long. This is used to check for interrupts being disabled at the time
of a lock() call, if enabled in config.h. The number of times this
happens is then counted in the kinfo structure. These events (recursive
lockings) lead to nasty race conditions.
caused interrupts to be reenabled (due to unlock), which caused a race. The
problems were especially visible on slower machines.
* Relocated free memory parsing to process manager. This saved quite some
code at the kernel level. Text size was reduced by about 650 bytes.
* Removed locks for updating the realtime in the clock's main loop and the
get_uptime function. Interrupts are no longer reentrant, so realtime is
immediately updated.
Reduced kernel size by 512KB by moving private buffer into cstart() function.
Replaced assertions with erroneous return values. Removed assertions relating
to isuserp(rp), since all processes should become user processes; system
processes are now treated similar to other processes.
* Removed some variants of the SYS_GETINFO calls from the kernel;
replaced them with new PM and utils libary functionality. Fixed
bugs in utils library that used old get_kenv() variant.
* Implemented a buffer in the kernel to gather random data.
Memory driver periodically checks this for /dev/random.
A better random algorithm can now be implemented in the driver.
Removed SYS_RANDOM; the SYS_GETINFO call is used instead.
* Remove SYS_KMALLOC from the kernel. Memory allocation can now
be done at the process manager with new 'other' library functions.
when lock timing is enabled in minix/config.h.
Added phys_zero() routine to klib386.s that zeroes a range of memory, and
added corresponding system call.
and type) are overwritten with newer flags/ arguments. The interface from
within the kernel is lock_notify(). User processes can make a system call with
notify(). NOTIFY fully replaces the old notification mechanism.
list of handlers, callable by irqctl system call
. workaround for hanging keyboard bug after shutdown.. if key is pressed
during or after shutdown procedure, keyboard stops working. It looks like
irq 1 gets stuck high if no keyboard reading is done (e.g. because the
irq is masked or tty driver has exited). Workaround is to leave irqs
enabled until the last second, and call shutdown() immediately after the
last driver has stopped (tty task). This way the chance of an unserviced
interrupt occuring is negligible.