Reorganized system call library; uses separate file per call now.

New configuration header file to include/ exclude functionality.
Extracted privileged features from struct proc and create new struct priv.
Renamed various system calls for readability.
This commit is contained in:
Jorrit Herder 2005-07-14 15:12:12 +00:00
parent 355d22ff06
commit 42ab148155
53 changed files with 1957 additions and 1503 deletions

View file

@ -15,27 +15,23 @@ LDFLAGS = -i
HEAD = mpx.o
OBJS = start.o protect.o klibc.o klib.o table.o main.o proc.o \
i8259.o exception.o system.o clock.o misc.o
SYS_OBJS = $s/proctl.o $s/copying.o $s/devio.o $s/sysctl.o $s/misc.o \
$s/sigctl.o $s/tracing.o $s/clock.o $s/irqctl.o $s/debugging.o \
$s/priority.o
LIBS = -ltimers
i8259.o exception.o system.o clock.o utility.o debug.o
SYSTEM = system.a
LIBS = -ltimers
# What to make.
kernel build: $(HEAD) $(OBJS) $(SYS_OBJS)
$(LD) $(CFLAGS) $(LDFLAGS) -o kernel $(HEAD) $(OBJS) $(SYS_OBJS) $(LIBS)
install -S 0 kernel
$(SYS_OBJS):
cd system && $(MAKE)
all install:
all: build
kernel build install: $(HEAD) $(OBJS)
cd system && $(MAKE) -$(MAKEFLAGS) $@
$(LD) $(CFLAGS) $(LDFLAGS) -o kernel \
$(HEAD) $(OBJS) \
$(SYSTEM) $(LIBS)
install -S 0 kernel
clean:
cd system && $(MAKE) -$(MAKEFLAGS) $@
rm -f *.o *.bak kernel
rm -f *.a *.o *.bak kernel
depend:
cd system && $(MAKE) -$(MAKEFLAGS) $@

View file

@ -2,8 +2,8 @@
* Important events that are handled by the CLOCK include alarm timers and
* (re)scheduling user processes.
* The CLOCK offers a direct interface to kernel processes. System services
* can access its services through system calls, such as sys_syncalrm(). The
* CLOCK task thus is hidden for the outside.
* can access its services through system calls, such as sys_setalarm(). The
* CLOCK task thus is hidden for the outside world.
*
* Changes:
* Mar 18, 2004 clock interface moved to SYSTEM task (Jorrit N. Herder)
@ -29,11 +29,10 @@
* The watchdog functions of expired timers are executed in do_clocktick().
* It is crucial that watchdog functions cannot block, or the CLOCK task may
* be blocked. Do not send() a message when the receiver is not expecting it.
* The use of notify(), which always returns, is strictly preferred!
* Instead, notify(), which always returns, should be used.
*/
#include "kernel.h"
#include "debug.h"
#include "proc.h"
#include <signal.h>
#include <minix/com.h>
@ -159,46 +158,31 @@ message *m_ptr; /* pointer to request message */
PRIVATE int clock_handler(hook)
irq_hook_t *hook;
{
/* This executes on every clock tick (i.e., every time the timer chip
* generates an interrupt). It does a little bit of work so the clock
* task does not have to be called on every tick.
/* This executes on each clock tick (i.e., every time the timer chip generates
* an interrupt). It does a little bit of work so the clock task does not have
* to be called on every tick. The clock task is called when:
*
* Switch context to do_clocktick() if an alarm has gone off.
* Also switch there to reschedule if the reschedule will do something.
* This happens when
* (1) quantum has expired
* (2) current process received full quantum (as clock sampled it!)
* (3) something else is ready to run.
* (1) the scheduling quantum of the running process has expired, or
* (2) a timer has expired and the watchdog function should be run.
*
* Many global global and static variables are accessed here. The safety
* of this must be justified. Most of them are not changed here:
* Many global global and static variables are accessed here. The safety of
* this must be justified. All scheduling and message passing code acquires a
* lock by temporarily disabling interrupts, so no conflicts with calls from
* the task level can occur. Furthermore, interrupts are not reentrant, the
* interrupt handler cannot be bothered by other interrupts.
*
* Variables that are updated in the clock's interrupt handler:
* lost_ticks:
* Clock ticks counted outside the clock task. This for example
* is used when the boot monitor processes a real mode interrupt.
* realtime:
* The current uptime is incremented with all outstanding ticks.
* proc_ptr, bill_ptr:
* These are used for accounting. It does not matter if proc.c
* is changing them, provided they are always valid pointers,
* since at worst the previous process would be billed.
* next_timeout, realtime, sched_ticks, bill_ptr, prev_ptr,
* These are tested to decide whether to call notify(). It
* does not matter if the test is sometimes (rarely) backwards
* due to a race, since this will only delay the high-level
* processing by one tick, or call the high level unnecessarily.
* The variables which are changed require more care:
* rp->p_user_time, rp->p_sys_time:
* These are protected by explicit locks in system.c.
* lost_ticks:
* Clock ticks counted outside the clock task.
* sched_ticks, prev_ptr:
* Updating these competes with similar code in do_clocktick().
* No lock is necessary, because if bad things happen here
* (like sched_ticks going negative), the code in do_clocktick()
* will restore the variables to reasonable values, and an
* occasional missed or extra sched() is harmless.
*
* Are these complications worth the trouble? Well, they make the system 15%
* faster on a 5MHz 8088, and make task debugging much easier since there are
* no task switches on an inactive system.
*/
register unsigned ticks;
message m;
/* Acknowledge the PS/2 clock interrupt. */
if (machine.ps_mca) outb(PORT_B, inb(PORT_B) | CLOCK_ACK_BIT);
@ -215,17 +199,16 @@ irq_hook_t *hook;
*/
proc_ptr->p_user_time += ticks;
if (proc_ptr != bill_ptr) bill_ptr->p_sys_time += ticks;
if (proc_ptr->p_flags & PREEMPTIBLE) proc_ptr->p_sched_ticks -= ticks;
if (priv(proc_ptr)->s_flags & PREEMPTIBLE) proc_ptr->p_sched_ticks -= ticks;
/* Check if do_clocktick() must be called. Done for alarms and scheduling.
* Some processes, such as the kernel tasks, cannot be preempted.
*/
if ((next_timeout <= realtime) || (proc_ptr->p_sched_ticks <= 0)) {
prev_ptr = proc_ptr; /* store running process */
m.NOTIFY_TYPE = HARD_INT;
lock_notify(CLOCK, &m); /* send event notification */
lock_alert(HARDWARE, CLOCK); /* send notification */
}
return(1); /* reenable clock interrupts */
return(1); /* reenable interrupts */
}
@ -289,6 +272,7 @@ PRIVATE void init_clock()
enable_irq(&clock_hook); /* ready for clock interrupts */
}
/*===========================================================================*
* clock_stop *
*===========================================================================*/

View file

@ -1,22 +1,21 @@
/* General constants used by the kernel. */
/* General macros and constants used by the kernel. */
#ifndef CONST_H
#define CONST_H
#include <ibm/interrupt.h> /* interrupt numbers and hardware vectors */
#include <ibm/ports.h> /* port addresses and magic numbers */
#include <ibm/bios.h> /* BIOS addresses, sizes and magic numbers */
#include <ibm/cpu.h> /* BIOS addresses, sizes and magic numbers */
#include <minix/config.h>
#include "config.h"
/* To translate an address in kernel space to a physical address. This is
* the same as umap_local(proc_ptr, D, vir, sizeof(*vir)), but less costly.
*/
#define vir2phys(vir) (kinfo.data_base + (vir_bytes) (vir))
/* Constants used in virtual_copy(). Values must be 0 and 1, respectively! */
#define _SRC_ 0
#define _DST_ 1
/* Translate a pointer to a field in a structure to a pointer to the structure
* itself. So it translates '&struct_ptr->field' back to 'struct_ptr'.
* itself. So it translates '&struct_ptr->field' back to 'struct_ptr'.
*/
#define structof(type, field, ptr) \
((type *) (((char *) (ptr)) - offsetof(type, field)))
@ -24,30 +23,9 @@
/* How many bytes for the kernel stack. Space allocated in mpx.s. */
#define K_STACK_BYTES 1024
/* How long should the process names be in the kernel? */
#define P_NAME_LEN 8
/* Scheduling quantum. Number of ticks before preemption. */
#define SCHED_MILLISEC 100 /* rate to call scheduler */
#define SCHED_TICKS (SCHED_MILLISEC*HZ/1000) /* ticks per schedule */
/* How many bytes should the circular buffer for kernel diagnostics. */
#define KMESS_BUF_SIZE 256
/* Maximum size in bytes for (port,value)-pairs vector to copy in. */
#define VDEVIO_BUF_SIZE 64
/* How many elements in vector of virtual copy requests. */
#define VCOPY_VEC_SIZE 16
/* How many IRQ hooks are there in total. */
#define NR_IRQ_HOOKS 16
/* How many buffers for notification messages should there be? */
#define NR_NOTIFY_BUFS 32
/* Buffer to gather randomness. How many entries before wrapping? */
#define RANDOM_ELEMENTS 32
/* Constants used in virtual_copy(). Values must be 0 and 1, respectively. */
#define _SRC_ 0
#define _DST_ 1
/* Constants and macros for bit map manipulation. */
#define BITCHUNK_BITS (sizeof(bitchunk_t) * CHAR_BIT)
@ -58,6 +36,14 @@
#define SET_BIT(map,bit) ( MAP_CHUNK(map,bit) |= (1 << CHUNK_OFFSET(bit) )
#define UNSET_BIT(map,bit) ( MAP_CHUNK(map,bit) &= ~(1 << CHUNK_OFFSET(bit) )
#define get_sys_bit(map,bit) \
( MAP_CHUNK(map.chunk,bit) & (1 << CHUNK_OFFSET(bit) )
#define set_sys_bit(map,bit) \
( MAP_CHUNK(map.chunk,bit) |= (1 << CHUNK_OFFSET(bit) )
#define unset_sys_bit(map,bit) \
( MAP_CHUNK(map.chunk,bit) &= ~(1 << CHUNK_OFFSET(bit) )
#define NR_SYS_CHUNKS BITMAP_CHUNKS(NR_SYS_PROCS)
#if (CHIP == INTEL)
@ -70,29 +56,18 @@
#define IF_MASK 0x00000200
#define IOPL_MASK 0x003000
#if ENABLE_LOCK_TIMING
#define locktimestart(c, v) timer_start(c, v)
#define locktimeend(c) timer_end(c)
#else
#define locktimestart(c, v)
#define locktimeend(c)
#endif
#if ENABLE_K_LOCKCHECK
#define lockcheck if(!(read_cpu_flags() & X86_FLAG_I)) kinfo.relocking++;
#else
#define lockcheck
#endif
/* Disable/Enable hardware interrupts. */
#define lock(c, v) do { lockcheck; intr_disable(); locktimestart(c, v); } while(0)
#define unlock(c) do { locktimeend(c); intr_enable(); } while(0)
/* Disable/ enable hardware interrupts. The parameters of lock() and unlock()
* are used when debugging is enabled. See debug.h for more information.
*/
#define lock(c, v) intr_disable();
#define unlock(c) intr_enable();
/* Sizes of memory tables. The boot monitor distinguishes three memory areas,
* namely low mem below 1M, 1M-16M, and mem after 16M. More chunks are needed
* for DOS MINIX.
*/
#define NR_MEMS 8 /* number of chunks of memory */
#define NR_MEMS 8
#endif /* (CHIP == INTEL) */
@ -100,7 +75,4 @@
/* M68000 specific constants go here. */
#endif /* (CHIP == M68000) */
#if ENABLE_INT_TIMING
#define INT_TIMING_BITS 12
#define INT_TIMING_ELEMENTS (1L << 12)
#endif
#endif /* CONST_H */

View file

@ -1,17 +1,17 @@
/* The system call implemented in this file:
* m_type: SYS_DEBUG
*
* The parameters for this system call are:
/* This file implements kernel debugging functionality that is not included
* in the standard kernel. Available functionality includes timing of lock
* functions and sanity checking of the scheduling queues.
*/
#include "../kernel.h"
#include "../system.h"
#include "../proc.h"
#include "../glo.h"
#include "kernel.h"
#include "proc.h"
#include "debug.h"
#include <limits.h>
#if ENABLE_LOCK_TIMING
#if DEBUG_TIME_LOCKS /* only include code if enabled */
/* Data structures to store lock() timing data. */
struct lock_timingdata timingdata[TIMING_CATEGORIES];
static unsigned long starttimes[TIMING_CATEGORIES][2];
#define HIGHCOUNT 0
@ -42,8 +42,6 @@ void timer_start(int cat, char *name)
}
read_tsc(&starttimes[cat][HIGHCOUNT], &starttimes[cat][LOWCOUNT]);
return;
}
void timer_end(int cat)
@ -102,9 +100,10 @@ void timer_end(int cat)
return;
}
#endif
#endif /* DEBUG_TIME_LOCKS */
#if ENABLE_K_DEBUGGING /* only include code if enabled */
#if DEBUG_SCHED_CHECK /* only include code if enabled */
#define PROCLIMIT 10000
@ -157,7 +156,7 @@ check_runqueues(char *when)
}
for (xp = BEG_PROC_ADDR; xp < END_PROC_ADDR; ++xp) {
if(! isempty(xp) && xp->p_ready && ! xp->p_found) {
if(! isemptyp(xp) && xp->p_ready && ! xp->p_found) {
kprintf("scheduling error: ready not on queue: %s\n", (karg_t) when);
panic("ready proc not on scheduling queue", NO_NUM);
if(l++ > PROCLIMIT) { panic("loop in proc.t?", NO_NUM); }
@ -165,8 +164,4 @@ check_runqueues(char *when)
}
}
/*==========================================================================*
* do_debug *
*==========================================================================*/
#endif /* ENABLE_K_DEBUGGING */
#endif /* DEBUG_SCHED_CHECK */

View file

@ -1,15 +1,74 @@
#ifndef DEBUG_H
#define DEBUG_H
#include <minix/config.h>
/* This header file defines all debugging constants and macros, and declares
* some variables. Certain debugging features redefine standard constants
* and macros. Therefore, this header file should be included after the
* other kernel headers.
*/
#if ENABLE_LOCK_TIMING
#include "config.h"
/* It's interesting to measure the time spent withing locked regions, because
* this is the time that the system is deaf to interrupts.
*/
#if DEBUG_TIME_LOCKS
#define TIMING_POINTS 20 /* timing resolution */
#define TIMING_CATEGORIES 20
#define TIMING_NAME 10
/* Definition of the data structure to store lock() timing data. */
struct lock_timingdata {
char names[TIMING_NAME];
unsigned long lock_timings[TIMING_POINTS];
unsigned long lock_timings_range[2];
unsigned long binsize, resets, misses, measurements;
};
/* The data is declared here, but allocated in debug.c. */
extern struct lock_timingdata timingdata[TIMING_CATEGORIES];
/* Prototypes for the timing functionality. */
_PROTOTYPE( void timer_start, (int cat, char *name) );
_PROTOTYPE( void timer_end, (int cat) );
#endif
#if ENABLE_K_DEBUGGING /* debugging */
#define locktimestart(c, v) timer_start(c, v)
#define locktimeend(c) timer_end(c)
#else
#define locktimestart(c, v)
#define locktimeend(c)
#endif /* DEBUG_TIME_LOCKS */
/* The locking checks counts relocking situation, which are dangerous because
* the inner lock may unlock the outer one.
*/
#if DEBUG_LOCK_CHECK
#define lockcheck if (!(read_cpu_flags() & X86_FLAG_I)) kinfo.relocking++;
#else
#define lockcheck
#endif /* DEBUG_LOCK_CHECK */
/* This check makes sure that the scheduling queues are in a consistent state.
* The check is run when the queues are updated with ready() and unready().
*/
#if DEBUG_SCHED_CHECK
_PROTOTYPE( void check_runqueues, (char *when) );
#endif /* DEBUG_SCHED_CHECK */
/* The timing and checking of kernel locking requires a redefine of the lock()
* and unlock() macros. That's done here. This redefine requires that this
* header is included after the other kernel headers.
*/
#if (DEBUG_TIME_LOCKS || DEBUG_LOCK_CHECK)
# undef lock
# define lock(c, v) do { lockcheck; intr_disable(); locktimestart(c, v); } while(0)
# undef unlock
# define unlock(c) do { locktimeend(c); intr_enable(); } while(0)
#endif
#endif /* DEBUG_H */
#endif /* DEBUG_H */

View file

@ -1,12 +1,11 @@
/* This file contains a simple exception handler. Exceptions in user
* processes are converted to signals. Exceptions in the kernel, MM and
* FS cause a panic.
* processes are converted to signals. Exceptions in a kernel task cause
* a panic.
*/
#include "kernel.h"
#include <signal.h>
#include "proc.h"
#include "debug.h"
/*==========================================================================*
* exception *

View file

@ -1,7 +1,10 @@
#ifndef GLO_H
#define GLO_H
/* Global variables used in the kernel. This file contains the declarations;
* storage space for the variables is allocated in table.c, because EXTERN is
* defined as extern unless the _TABLE definition is seen. We rely on the
* compiler's default initialization (0) for several global variables.
* compiler's default initialization (0) for several global variables.
*/
#ifdef _TABLE
#undef EXTERN
@ -9,6 +12,7 @@
#endif
#include <minix/config.h>
#include "config.h"
/* Variables relating to shutting down MINIX. */
EXTERN char kernel_exception; /* TRUE after system exceptions */
@ -42,11 +46,6 @@ EXTERN irq_hook_t *irq_handlers[NR_IRQ_VECTORS];/* list of IRQ handlers */
EXTERN int irq_actids[NR_IRQ_VECTORS]; /* IRQ ID bits active */
EXTERN int irq_use; /* map of all in-use irq's */
/* Data structure to store lock() timing data. */
#if ENABLE_LOCK_TIMING
EXTERN struct lock_timedata timingdata[TIMING_CATEGORIES];
#endif
/* Miscellaneous. */
EXTERN reg_t mon_ss, mon_sp; /* boot monitor stack */
EXTERN int mon_return; /* true if we can return to monitor */
@ -63,3 +62,4 @@ EXTERN _PROTOTYPE( void (*level0_func), (void) );
/* M68000 specific variables go here. */
#endif
#endif /* GLO_H */

View file

@ -7,7 +7,6 @@
#include "kernel.h"
#include "proc.h"
#include "debug.h"
#include <minix/com.h>
#define ICW1_AT 0x11 /* edge triggered, cascade, need ICW4 */
@ -49,7 +48,8 @@ int mine;
*/
int i;
lock(6, "intr_init");
intr_disable();
if (machine.protected) {
/* The AT and newer PS/2 have two interrupt controllers, one master,
* one slaved at IRQ 2. (We don't have to deal with the PC that

View file

@ -1,3 +1,6 @@
#ifndef IPC_H
#define IPC_H
/* Masks and flags for system calls. */
#define SYSCALL_FUNC 0x0F /* mask for system call function */
#define SYSCALL_FLAGS 0xF0 /* mask for system call flags */
@ -11,10 +14,13 @@
#define RECEIVE 2 /* function code for receiving messages */
#define SENDREC 3 /* function code for SEND + RECEIVE */
#define NOTIFY 4 /* function code for notifications */
#define ALERT 5 /* function code for alerting */
/* Call masks indicating which system calls a process can make. */
#define EMPTY_CALL_MASK (0)
#define USER_CALL_MASK (1 << SENDREC)
#define _USER_CALL_MASK ((1 << SENDREC) | (1 << ALERT))
#define SYSTEM_CALL_MASK (~0)
#define USER_CALL_MASK (~0)
#endif /* IPC_H */

View file

@ -1,3 +1,6 @@
#ifndef KERNEL_H
#define KERNEL_H
/* This is the master header for the kernel. It includes some other files
* and defines the principal constants.
*/
@ -19,8 +22,13 @@
#include <ibm/portio.h> /* device I/O and toggle interrupts */
#endif
#include "const.h" /* kernel constants */
#include "type.h" /* kernel type definitions */
#include "proto.h" /* kernel function prototypes */
#include "glo.h" /* kernel global variables */
/* Important kernel header files. */
#include "config.h" /* configuration, MUST be first */
#include "const.h" /* constants, MUST be second */
#include "type.h" /* type definitions, MUST be third */
#include "proto.h" /* function prototypes */
#include "glo.h" /* global variables */
#include "ipc.h" /* IPC constants */
#include "debug.h" /* debugging, MUST be last kernel header */
#endif /* KERNEL_H */

View file

@ -9,14 +9,13 @@
* kmemset: set n bytes to c starting at pointer p
* kprintf: printf for the kernel (see working below)
* kstrcmp: lexicographical comparison of two strings
* kstrlen: get number of non-null characters in string
* kstrncpy: copy string and pad or copy up to n chars
*
* This file contains the routines that take care of kernel messages, i.e.,
* diagnostic output within the kernel. Kernel messages are not directly
* displayed on the console, because this must be done by the PRINT driver.
* Instead, the kernel accumulates characters in a buffer and notifies the
* PRINT driver when a new message is ready.
* output driver when a new message is ready.
*/
#include "kernel.h"
@ -154,63 +153,31 @@ int c; /* character to append */
/* Accumulate a single character for a kernel message. Send a notification
* the to PRINTF_PROC driver if an END_OF_KMESS is encountered.
*/
message m;
if (c != END_OF_KMESS) {
kmess.km_buf[kmess.km_next] = c; /* put normal char in buffer */
if (kmess.km_size < KMESS_BUF_SIZE)
kmess.km_size += 1;
kmess.km_next = (kmess.km_next + 1) % KMESS_BUF_SIZE;
} else {
m.NOTIFY_TYPE = NEW_KMESS;
lock_notify(PRINTF_PROC, &m);
lock_alert(SYSTEM, PRINTF_PROC);
}
}
/*=========================================================================*
* kstrlen *
*=========================================================================*/
PUBLIC size_t kstrlen(const char *org)
{
register const char *s = org;
while (*s++)
/* EMPTY */ ;
return --s - org;
}
/*=========================================================================*
* kstrcmp *
*=========================================================================*/
int kstrcmp(register const char *s1, register const char *s2)
{
while (*s1 == *s2++) {
while (*s1 == *s2++)
if (*s1++ == '\0') return 0;
}
if (*s1 == '\0') return -1;
if (*--s2 == '\0') return 1;
return (unsigned char) *s1 - (unsigned char) *s2;
}
/*=========================================================================*
* kstrncmp *
*=========================================================================*/
PUBLIC int kstrncmp(register const char *s1, register const char *s2, register size_t n)
{
while (n > 0 && *s1 == *s2++) {
if (*s1++ == '\0') return 0;
n--;
}
if (n > 0) {
if (*s1 == '\0') return -1;
if (*--s2 == '\0') return 1;
return (unsigned char) *s1 - (unsigned char) *s2;
}
return 0;
}
/*=========================================================================*
* kstrncpy *
*=========================================================================*/

View file

@ -19,7 +19,6 @@
#include <minix/callnr.h>
#include <minix/com.h>
#include "proc.h"
#include "sendmask.h"
/* Prototype declarations for PRIVATE functions. */
FORWARD _PROTOTYPE( void announce, (void));
@ -33,7 +32,8 @@ PUBLIC void main()
{
/* Start the ball rolling. */
register struct proc *rp;
register int i;
register struct priv *sp;
register int i,s;
int hdrindex; /* index to array of a.out headers */
phys_clicks text_base;
vir_clicks text_clicks;
@ -46,13 +46,19 @@ PUBLIC void main()
intr_init(1);
/* Clear the process table. Anounce each slot as empty and set up mappings
* for proc_addr() and proc_nr() macros.
* for proc_addr() and proc_nr() macros. Do the same for the table with
* system properties structures.
*/
for (rp = BEG_PROC_ADDR, i = -NR_TASKS; rp < END_PROC_ADDR; ++rp, ++i) {
rp->p_rts_flags = SLOT_FREE; /* initialize free slot */
rp->p_nr = i; /* proc number from ptr */
(pproc_addr + NR_TASKS)[i] = rp; /* proc ptr from number */
}
for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
sp->s_proc_nr = NONE; /* initialize as free */
sp->s_id = i; /* priv structure index */
ppriv_addr[i] = sp; /* priv ptr from number */
}
/* Set up proc table entries for tasks and servers. The stacks of the
* kernel tasks are initialized to an array in data space. The stacks
@ -65,23 +71,23 @@ PUBLIC void main()
/* Task stacks. */
ktsb = (reg_t) t_stack;
for (i=0; i < IMAGE_SIZE; ++i) {
ip = &image[i]; /* t's task attributes */
rp = proc_addr(ip->proc_nr); /* t's process slot */
for (i=0; i < NR_BOOT_PROCS; ++i) {
ip = &image[i]; /* process' attributes */
(void) init_proc(ip->proc_nr, NONE); /* initialize new process */
rp = proc_addr(ip->proc_nr); /* get process pointer */
kstrncpy(rp->p_name, ip->proc_name, P_NAME_LEN); /* set name */
rp->p_name[P_NAME_LEN-1] = '\0'; /* just for safety */
rp->p_flags = ip->flags; /* process flags */
rp->p_max_priority = ip->priority; /* max scheduling priority */
rp->p_priority = ip->priority; /* current priority */
rp->p_quantum_size = ip->quantum; /* quantum size in ticks */
rp->p_sched_ticks = ip->quantum; /* current credit */
rp->p_full_quantums = QUANTUMS(ip->priority); /* quantums left */
rp->p_call_mask = ip->call_mask; /* allowed system calls */
rp->p_sendmask = ip->sendmask; /* sendmask protection */
rp->p_priv->s_flags = ip->flags; /* process flags */
rp->p_priv->s_call_mask = ip->call_mask;/* allowed system calls */
if (i-NR_TASKS < 0) { /* part of the kernel? */
if (ip->stksize > 0) { /* HARDWARE stack size is 0 */
rp->p_stguard = (reg_t *) ktsb;
*rp->p_stguard = STACK_GUARD;
rp->p_priv->s_stack_guard = (reg_t *) ktsb;
*rp->p_priv->s_stack_guard = STACK_GUARD;
}
ktsb += ip->stksize; /* point to high end of stack */
rp->p_reg.sp = ktsb; /* this task's initial stack ptr */
@ -126,9 +132,6 @@ PUBLIC void main()
}
/* Set ready. The HARDWARE task is never ready. */
#if ENABLE_K_DEBUGGING
rp->p_ready = 0;
#endif
if (rp->p_nr != HARDWARE) lock_ready(rp);
rp->p_rts_flags = 0;
@ -198,12 +201,6 @@ int how; /* reason to shut down */
return; /* await sys_abort() from TTY */
}
/* The TTY expects two HARD_STOP notifications. One to switch to the
* primary console for stop sequence output, and one to actually exit.
*/
m.NOTIFY_TYPE = HARD_STOP;
lock_notify(TTY, &m);
/* Allow processes to be scheduled to clean up, unless a CPU exception
* occurred. This is done by setting a timer. The timer argument passes
* the shutdown status.

View file

@ -38,14 +38,10 @@
* nonempty lists. As shown above, this is not required with pointer pointers.
*/
#include "kernel.h"
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/callnr.h>
#include "kernel.h"
#include "proc.h"
#include "const.h"
#include "debug.h"
#include "ipc.h"
#include "sendmask.h"
/* Scheduling and message passing functions. The functions are available to
@ -56,6 +52,7 @@ FORWARD _PROTOTYPE( int mini_send, (struct proc *caller_ptr, int dst,
message *m_ptr, unsigned flags) );
FORWARD _PROTOTYPE( int mini_receive, (struct proc *caller_ptr, int src,
message *m_ptr, unsigned flags) );
FORWARD _PROTOTYPE( int mini_alert, (struct proc *caller_ptr, int dst) );
FORWARD _PROTOTYPE( int mini_notify, (struct proc *caller_ptr, int dst,
message *m_ptr ) );
@ -64,12 +61,22 @@ FORWARD _PROTOTYPE( void unready, (struct proc *rp) );
FORWARD _PROTOTYPE( void sched, (struct proc *rp) );
FORWARD _PROTOTYPE( void pick_proc, (void) );
#define BuildMess(m,n) \
#define BuildOldMess(m,n) \
(m).NOTIFY_SOURCE = (n)->n_source, \
(m).NOTIFY_TYPE = (n)->n_type, \
(m).NOTIFY_FLAGS = (n)->n_flags, \
(m).NOTIFY_ARG = (n)->n_arg;
#define BuildMess(m_ptr, src, dst_ptr) \
(m_ptr)->m_source = (src); \
(m_ptr)->m_type = NOTIFY_FROM(src); \
(m_ptr)->NOTIFY_TIMESTAMP = get_uptime(); \
if ((src) == HARDWARE) { \
(m_ptr)->NOTIFY_ARG = priv(dst_ptr)->s_int_pending; \
priv(dst_ptr)->s_int_pending = 0; \
}
#if (CHIP == INTEL)
#define CopyMess(s,sp,sm,dp,dm) \
cp_mess(s, (sp)->p_memmap[D].mem_phys, (vir_bytes)sm, (dp)->p_memmap[D].mem_phys, (vir_bytes)dm)
@ -107,7 +114,7 @@ message *m_ptr; /* pointer to message in the caller's space */
* kernel may only be SENDREC, because tasks always reply and may not block
* if the caller doesn't do receive().
*/
if (! (caller_ptr->p_call_mask & (1 << function)) ||
if (! (priv(caller_ptr)->s_call_mask & (1 << function)) ||
(iskerneln(src_dst) && function != SENDREC))
return(ECALLDENIED);
@ -115,6 +122,7 @@ message *m_ptr; /* pointer to message in the caller's space */
if (! (isokprocn(src_dst) || src_dst == ANY || function == ECHO))
return(EBADSRCDST);
#if DEAD_CODE /* temporarily disabled for testing ALERT */
/* Check validity of message pointer. */
vb = (vir_bytes) m_ptr;
vlo = vb >> CLICK_SHIFT; /* vir click for bottom of message */
@ -132,6 +140,7 @@ message *m_ptr; /* pointer to message in the caller's space */
if (vhi < vlo ||
vhi - caller_ptr->p_memmap[D].mem_vir >= caller_ptr->p_memmap[D].mem_len)
return(EFAULT);
#endif
#endif
/* Now check if the call is known and try to perform the request. The only
@ -169,6 +178,9 @@ message *m_ptr; /* pointer to message in the caller's space */
case RECEIVE:
result = mini_receive(caller_ptr, src_dst, m_ptr, flags);
break;
case ALERT:
result = mini_alert(caller_ptr, src_dst);
break;
case NOTIFY:
result = mini_notify(caller_ptr, src_dst, m_ptr);
break;
@ -182,14 +194,16 @@ message *m_ptr; /* pointer to message in the caller's space */
}
/* If the caller made a successfull, blocking system call it's priority may
* be raised. The priority have been lowered if a process consumed to many
* full quantums in a row to prevent damage from infinite loops
* be raised. The priority may have been lowered if a process consumed too
* many full quantums in a row to prevent damage from infinite loops
*/
#if DEAD_CODE /* temporarily disabled for testing ALERT */
if ((caller_ptr->p_priority > caller_ptr->p_max_priority) &&
! (flags & NON_BLOCKING) && (result == OK)) {
caller_ptr->p_priority = caller_ptr->p_max_priority;
caller_ptr->p_full_quantums = QUANTUMS(caller_ptr->p_priority);
}
#endif
/* Now, return the result of the system call to the caller. */
return(result);
@ -264,6 +278,9 @@ unsigned flags; /* system call flags */
register struct notification **ntf_q_pp;
message m;
int bit_nr;
sys_map_t *map;
bitchunk_t *chunk;
int i, src_id, src_proc_nr;
/* Check to see if a message from desired source is already available.
* The caller's SENDING flag may be set if SENDREC couldn't send. If it is
@ -271,6 +288,48 @@ unsigned flags; /* system call flags */
*/
if (!(caller_ptr->p_rts_flags & SENDING)) {
/* Check if there are pending notifications, except for SENDREC. */
if (! (flags & FRESH_ANSWER)) {
map = &priv(caller_ptr)->s_notify_pending;
for (chunk=&map->chunk[0]; chunk<&map->chunk[NR_SYS_CHUNKS]; chunk++) {
/* Find a pending notification from the requested source. */
if (! *chunk) continue; /* no bits in chunk */
for (i=0; ! (*chunk & (1<<i)); ++i) {} /* look up the bit */
src_id = (chunk - &map->chunk[0]) * BITCHUNK_BITS + i;
if (src_id >= NR_SYS_PROCS) break; /* out of range */
src_proc_nr = id_to_nr(src_id); /* get source proc */
if (src!=ANY && src!=src_proc_nr) continue; /* source not ok */
*chunk &= ~(1 << i); /* no longer pending */
/* Found a suitable source, deliver the notification message. */
BuildMess(&m, src_proc_nr, caller_ptr); /* assemble message */
CopyMess(src_proc_nr, proc_addr(HARDWARE), &m, caller_ptr, m_ptr);
return(OK); /* report success */
}
ntf_q_pp = &caller_ptr->p_ntf_q; /* get pointer pointer */
while (*ntf_q_pp != NULL) {
if (src == ANY || src == (*ntf_q_pp)->n_source) {
/* Found notification. Assemble and copy message. */
BuildOldMess(m, *ntf_q_pp);
if (m.m_source == HARDWARE) {
m.NOTIFY_ARG = caller_ptr->p_priv->s_int_pending;
caller_ptr->p_priv->s_int_pending = 0;
}
CopyMess((*ntf_q_pp)->n_source, proc_addr(HARDWARE), &m,
caller_ptr, m_ptr);
/* Remove notification from queue and bit map. */
bit_nr = (int) (*ntf_q_pp - &notify_buffer[0]);
*ntf_q_pp = (*ntf_q_pp)->n_next;/* remove from queue */
free_bit(bit_nr, notify_bitmap, NR_NOTIFY_BUFS);
return(OK); /* report success */
}
ntf_q_pp = &(*ntf_q_pp)->n_next; /* proceed to next */
}
}
/* Check caller queue. Use pointer pointers to keep code simple. */
xpp = &caller_ptr->p_caller_q;
while (*xpp != NIL_PROC) {
@ -284,25 +343,6 @@ unsigned flags; /* system call flags */
xpp = &(*xpp)->p_q_link; /* proceed to next */
}
/* Check if there are pending notifications, except for SENDREC. */
if (! (flags & FRESH_ANSWER)) {
ntf_q_pp = &caller_ptr->p_ntf_q; /* get pointer pointer */
while (*ntf_q_pp != NULL) {
if (src == ANY || src == (*ntf_q_pp)->n_source) {
/* Found notification. Assemble and copy message. */
BuildMess(m, *ntf_q_pp);
CopyMess((*ntf_q_pp)->n_source, proc_addr(HARDWARE), &m,
caller_ptr, m_ptr);
/* Remove notification from queue and bit map. */
bit_nr = (int) (*ntf_q_pp - &notify_buffer[0]);
*ntf_q_pp = (*ntf_q_pp)->n_next;/* remove from queue */
free_bit(bit_nr, notify_bitmap, NR_NOTIFY_BUFS);
return(OK); /* report success */
}
ntf_q_pp = &(*ntf_q_pp)->n_next; /* proceed to next */
}
}
}
/* No suitable message is available or the caller couldn't send in SENDREC.
@ -320,6 +360,45 @@ unsigned flags; /* system call flags */
}
/*===========================================================================*
* mini_alert *
*===========================================================================*/
PRIVATE int mini_alert(caller_ptr, dst)
register struct proc *caller_ptr; /* sender of the notification */
int dst; /* which process to notify */
{
register struct proc *dst_ptr = proc_addr(dst);
int src_id; /* source id for late delivery */
message m; /* the notification message */
/* Check to see if target is blocked waiting for this message. A process
* can be both sending and receiving during a SENDREC system call.
*/
if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
(dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
/* Destination is indeed waiting for a message. Assemble a notification
* message and deliver it. Copy from pseudo-source HARDWARE, since the
* message is in the kernel's address space.
*/
BuildMess(&m, proc_nr(caller_ptr), dst_ptr);
CopyMess(proc_nr(caller_ptr), proc_addr(HARDWARE), &m,
dst_ptr, dst_ptr->p_messbuf);
dst_ptr->p_rts_flags &= ~RECEIVING; /* deblock destination */
if (dst_ptr->p_rts_flags == 0) ready(dst_ptr);
return(OK);
}
/* Destination is not ready to receive the notification. Add it to the
* bit map with pending notifications. Note the indirectness: the system id
* instead of the process number is used in the pending bit map.
*/
src_id = priv(caller_ptr)->s_id;
set_sys_bit(priv(dst_ptr)->s_notify_pending, src_id);
return(OK);
}
/*===========================================================================*
* mini_notify *
*===========================================================================*/
@ -337,15 +416,22 @@ message *m_ptr; /* pointer to message buffer */
/* Check to see if target is blocked waiting for this message. A process
* can be both sending and receiving during a SENDREC system call.
*/
if ( (dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
(dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
if ((dst_ptr->p_rts_flags & (RECEIVING|SENDING)) == RECEIVING &&
(dst_ptr->p_getfrom == ANY || dst_ptr->p_getfrom == caller_ptr->p_nr)) {
/* Destination is indeed waiting for this message. */
CopyMess(proc_nr(caller_ptr), caller_ptr, m_ptr,
dst_ptr, dst_ptr->p_messbuf);
dst_ptr->p_rts_flags &= ~RECEIVING; /* deblock destination */
if (dst_ptr->p_rts_flags == 0) ready(dst_ptr);
return(OK);
/* Destination is indeed waiting for this message. Check if the source
* is HARDWARE; this is a special case that gets the map of pending
* interrupts as an argument. Then deliver the notification message.
*/
if (proc_nr(caller_ptr) == HARDWARE) {
m_ptr->NOTIFY_ARG = priv(dst_ptr)->s_int_pending;
priv(dst_ptr)->s_int_pending = 0;
}
CopyMess(proc_nr(caller_ptr), caller_ptr, m_ptr, dst_ptr, dst_ptr->p_messbuf);
dst_ptr->p_rts_flags &= ~RECEIVING; /* deblock destination */
if (dst_ptr->p_rts_flags == 0) ready(dst_ptr);
return(OK);
}
/* Destination is not ready. Add the notification to the pending queue.
@ -389,26 +475,27 @@ message *m_ptr; /* pointer to message buffer */
/*==========================================================================*
* lock_notify *
*==========================================================================*/
PUBLIC int lock_notify(dst, m_ptr)
int dst; /* to whom is message being sent? */
message *m_ptr; /* pointer to message buffer */
PUBLIC int lock_alert(src, dst)
int src; /* sender of the notification */
int dst; /* who is to be notified */
{
/* Safe gateway to mini_notify() for tasks and interrupt handlers. MINIX
/* Safe gateway to mini_notify() for tasks and interrupt handlers. The sender
* is explicitely given to prevent confusion where the call comes from. MINIX
* kernel is not reentrant, which means to interrupts are disabled after
* the first kernel entry (hardware interrupt, trap, or exception). Locking
* work is done by temporarily disabling interrupts.
* is done by temporarily disabling interrupts.
*/
int result;
/* Exception or interrupt occurred, thus already locked. */
if (k_reenter >= 0) {
result = mini_notify(proc_addr(HARDWARE), dst, m_ptr);
result = mini_alert(proc_addr(src), dst);
}
/* Call from task level, locking is required. */
else {
lock(0, "notify");
result = mini_notify(proc_ptr, dst, m_ptr);
lock(0, "alert");
result = mini_alert(proc_addr(src), dst);
unlock(0);
}
return(result);
@ -424,11 +511,9 @@ register struct proc *rp; /* this process is now runnable */
/* Add 'rp' to one of the queues of runnable processes. */
register int q = rp->p_priority; /* scheduling queue to use */
#if ENABLE_K_DEBUGGING
if(rp->p_ready) {
kprintf("ready() already ready process\n", NO_NUM);
}
rp->p_ready = 1;
#if DEBUG_SCHED_CHECK
check_runqueues("ready");
if(rp->p_ready) kprintf("ready() already ready process\n", NO_NUM);
#endif
/* Processes, in principle, are added to the end of the queue. However,
@ -439,7 +524,7 @@ register struct proc *rp; /* this process is now runnable */
rdy_head[q] = rdy_tail[q] = rp; /* create a new queue */
rp->p_nextready = NIL_PROC; /* mark new end */
}
else if (rp->p_flags & SCHED_Q_HEAD) { /* add to head of queue */
else if (priv(rp)->s_flags & RDY_Q_HEAD) { /* add to head of queue */
rp->p_nextready = rdy_head[q]; /* chain head of queue */
rdy_head[q] = rp; /* set new queue head */
}
@ -449,6 +534,11 @@ register struct proc *rp; /* this process is now runnable */
rp->p_nextready = NIL_PROC; /* mark new end */
}
pick_proc(); /* select next to run */
#if DEBUG_SCHED_CHECK
rp->p_ready = 1;
check_runqueues("ready");
#endif
}
/*===========================================================================*
@ -463,19 +553,17 @@ register struct proc *rp; /* this process is no longer runnable */
register struct proc **xpp; /* iterate over queue */
register struct proc *prev_xp;
#if ENABLE_K_DEBUGGING
if(!rp->p_ready) {
kprintf("unready() already unready process\n", NO_NUM);
}
rp->p_ready = 0;
#endif
/* Side-effect for kernel: check if the task's stack still is ok? */
if (iskernelp(rp)) {
if (*rp->p_stguard != STACK_GUARD)
if (*priv(rp)->s_stack_guard != STACK_GUARD)
panic("stack overrun by task", proc_nr(rp));
}
#if DEBUG_SCHED_CHECK
check_runqueues("unready");
if (! rp->p_ready) kprintf("unready() already unready process\n", NO_NUM);
#endif
/* Now make sure that the process is not in its ready queue. Remove the
* process if it is found. A process can be made unready even if it is not
* running by being sent a signal that kills it.
@ -493,6 +581,11 @@ register struct proc *rp; /* this process is no longer runnable */
}
prev_xp = *xpp; /* save previous in chain */
}
#if DEBUG_SCHED_CHECK
rp->p_ready = 0;
check_runqueues("unready");
#endif
}
/*===========================================================================*
@ -504,16 +597,19 @@ struct proc *sched_ptr; /* quantum eating process */
int q;
/* Check if this process is preemptible, otherwise leave it as is. */
if (! (sched_ptr->p_flags & PREEMPTIBLE)) {
if (! (priv(sched_ptr)->s_flags & PREEMPTIBLE)) {
#if DEAD_CODE
kprintf("Warning, sched for nonpreemptible proc %d\n", sched_ptr->p_nr);
#endif
return;
}
#if DEAD_CODE
if (sched_ptr->p_nr == IS_PROC_NR) {
kprintf("Scheduling IS: pri: %d, ", sched_ptr->p_priority);
kprintf("qua %d", sched_ptr->p_full_quantums);
}
#endif
/* Process exceeded the maximum number of full quantums it is allowed
* to use in a row. Lower the process' priority, but make sure we don't
* end up in the IDLE queue. This helps to limit the damage caused by
@ -525,8 +621,10 @@ struct proc *sched_ptr; /* quantum eating process */
unready(sched_ptr); /* remove from queues */
sched_ptr->p_priority ++; /* lower priority */
ready(sched_ptr); /* add to new queue */
#if DEAD_CODE
kprintf("Warning, proc %d got lower priority: ", sched_ptr->p_nr);
kprintf("%d\n", sched_ptr->p_priority);
#endif
}
sched_ptr->p_full_quantums = QUANTUMS(sched_ptr->p_priority);
}
@ -548,12 +646,13 @@ kprintf("%d\n", sched_ptr->p_priority);
sched_ptr->p_sched_ticks = sched_ptr->p_quantum_size;
pick_proc();
#if DEAD_CODE
if (sched_ptr->p_nr == IS_PROC_NR) {
kprintf("Next proc: %d, ", next_ptr->p_nr);
kprintf("pri: %d, ", next_ptr->p_priority);
kprintf("qua: %d\n", next_ptr->p_full_quantums);
}
#endif
}
@ -576,7 +675,7 @@ PRIVATE void pick_proc()
for (q=0; q < NR_SCHED_QUEUES; q++) {
if ( (rp = rdy_head[q]) != NIL_PROC) {
next_ptr = rp; /* run process 'rp' next */
if (rp->p_flags & BILLABLE)
if (priv(rp)->s_flags & BILLABLE)
bill_ptr = rp; /* bill for system time */
return;
}

View file

@ -12,6 +12,7 @@
#include <minix/com.h>
#include "protect.h"
#include "const.h"
#include "priv.h"
struct proc {
struct stackframe_s p_reg; /* process' registers saved in stack frame */
@ -25,9 +26,8 @@ struct proc {
/* M68000 specific registers and FPU details go here. */
#endif
reg_t *p_stguard; /* stack guard word */
proc_nr_t p_nr; /* number of this process (for fast access) */
char p_flags; /* PREEMTIBLE, BILLABLE, etc. */
struct priv *p_priv; /* system privileges structure */
char p_rts_flags; /* SENDING, RECEIVING, etc. */
char p_priority; /* current scheduling priority */
@ -36,11 +36,7 @@ struct proc {
char p_sched_ticks; /* number of scheduling ticks left */
char p_full_quantums; /* number of full quantums left */
char p_call_mask; /* bit map with allowed system call traps */
send_mask_t p_sendmask; /* mask indicating to whom proc may send */
struct mem_map p_memmap[NR_LOCAL_SEGS]; /* local memory map (T, D, S) */
struct far_mem p_farmem[NR_REMOTE_SEGS]; /* remote memory map */
struct mem_map p_memmap[NR_LOCAL_SEGS]; /* memory map (T, D, S) */
clock_t p_user_time; /* user time in ticks */
clock_t p_sys_time; /* sys time in ticks */
@ -53,19 +49,15 @@ struct proc {
proc_nr_t p_getfrom; /* from whom does process want to receive? */
proc_nr_t p_sendto; /* to whom does process want to send? */
timer_t p_alarm_timer; /* timer shared by different alarm types */
sigset_t p_pending; /* bit map for pending kernel signals */
char p_name[P_NAME_LEN]; /* name of the process, including \0 */
#if ENABLE_K_DEBUGGING
#if DEBUG_SCHED_CHECK
int p_ready, p_found;
#endif
};
/* Guard word for task stacks. */
#define STACK_GUARD ((reg_t) (sizeof(reg_t) == 2 ? 0xBEEF : 0xDEADBEEF))
/* Bits for the runtime flags. A process is runnable iff p_rts_flags == 0. */
#define SLOT_FREE 0x01 /* process slot is free */
#define NO_MAP 0x02 /* keeps unmapped forked child from running */
@ -74,11 +66,7 @@ struct proc {
#define SIGNALED 0x10 /* set when new kernel signal arrives */
#define SIG_PENDING 0x20 /* unready while signal being processed */
#define P_STOP 0x40 /* set when process is being traced */
/* Bits for the other process flags. */
#define PREEMPTIBLE 0x01 /* kernel tasks are not preemptible */
#define SCHED_Q_HEAD 0x02 /* add to queue head instead of tail */
#define BILLABLE 0x04 /* system services are not billable */
#define NO_PRIV 0x80 /* privilege structure not yet initialized */
/* Scheduling priorities for p_priority. Values must start at zero (highest
* priority) and increment. Priorities of the processes in the boot image can

View file

@ -215,7 +215,6 @@ vir_bytes size;
int privilege;
{
/* Build descriptor for a data segment. */
sdesc(segdp, base, size);
segdp->access = (privilege << DPL_SHIFT) | (PRESENT | SEGMENT | WRITEABLE);
/* EXECUTABLE = 0, EXPAND_DOWN = 0, ACCESSED = 0 */

View file

@ -13,16 +13,13 @@ _PROTOTYPE( void clock_stop, (void) );
_PROTOTYPE( clock_t get_uptime, (void) );
_PROTOTYPE( unsigned long read_clock, (void) );
_PROTOTYPE( void set_timer, (struct timer *tp, clock_t t, tmr_func_t f) );
_PROTOTYPE( void reset_timer, (struct timer *tp) );
_PROTOTYPE( void reset_timer, (struct timer *tp) );
/* klibc.c */
_PROTOTYPE( int katoi, (register const char *s));
_PROTOTYPE( void *kmemcpy, (void *s1, const void *s2, register size_t n));
_PROTOTYPE( void *kmemset, (void *s, register int c, register size_t n));
_PROTOTYPE( int kstrcmp, (register const char *s1, register const char *s2));
_PROTOTYPE( size_t kstrlen, (const char *s));
_PROTOTYPE( int kstrncmp,
(register const char *s1, register const char *s2, register size_t n));
_PROTOTYPE( char *kstrncpy,
(char *s1, register const char *s2, register const ssize_t n));
#define karg(arg) (karg_t) (arg)
@ -33,14 +30,16 @@ _PROTOTYPE( void main, (void) );
_PROTOTYPE( void prepare_shutdown, (int how) );
_PROTOTYPE( void stop_sequence, (struct timer *tp) );
/* misc.c */
/* utility.c */
_PROTOTYPE( void panic, (_CONST char *s, int n) );
_PROTOTYPE( void safe_lock, (int c, char *v) );
_PROTOTYPE( void safe_unlock, (void) );
_PROTOTYPE( int alloc_bit, (bitchunk_t *map, bit_t nr_bits) );
_PROTOTYPE( void free_bit, (bit_t nr, bitchunk_t *map, bit_t nr_bits) );
/* proc.c */
_PROTOTYPE( int sys_call, (int function, int src_dest, message *m_ptr) );
_PROTOTYPE( int lock_notify, (int dst, message *m_ptr) );
_PROTOTYPE( int lock_alert, (int src, int dst) );
_PROTOTYPE( int lock_send, (int dst, message *m_ptr) );
_PROTOTYPE( void lock_ready, (struct proc *rp) );
_PROTOTYPE( void lock_sched, (struct proc *rp) );
@ -52,6 +51,7 @@ _PROTOTYPE( void cstart, (U16_t cs, U16_t ds, U16_t mds,
/* system.c */
_PROTOTYPE( void cause_sig, (int proc_nr, int sig_nr) );
_PROTOTYPE( int init_proc, (int proc_nr, int proto_nr) );
_PROTOTYPE( void clear_proc, (int proc_nr) );
_PROTOTYPE( phys_bytes numap_local, (int proc_nr, vir_bytes vir_addr,
vir_bytes bytes) );

View file

@ -22,6 +22,7 @@
* generic_handler: interrupt handler for user-level device drivers
*
* Changes:
* Apr 25, 2005 new init_proc() function (Jorrit N. Herder)
* Apr 25, 2005 made mapping of call vector explicit (Jorrit N. Herder)
* Oct 29, 2004 new clear_proc() function (Jorrit N. Herder)
* Oct 17, 2004 generic handler and IRQ policies (Jorrit N. Herder)
@ -38,8 +39,6 @@
#include <unistd.h>
#include <sys/sigcontext.h>
#include <sys/svrctl.h>
#include <minix/callnr.h>
#include "sendmask.h"
#if (CHIP == INTEL)
#include <ibm/memory.h>
#include "protect.h"
@ -55,7 +54,7 @@ PUBLIC int (*call_vec[NR_SYS_CALLS])(message *m_ptr);
#define map(call_nr, handler) \
{extern int dummy[NR_SYS_CALLS > (unsigned) (call_nr) ? 1 : -1];} \
call_vec[(call_nr)] = (handler)
call_vec[(call_nr)] = (handler)
FORWARD _PROTOTYPE( void initialize, (void));
@ -78,11 +77,9 @@ PUBLIC void sys_task()
/* Handle the request. */
if ((unsigned) m.m_type < NR_SYS_CALLS) {
result = (*call_vec[m.m_type])(&m); /* do system call */
} else if(m.NOTIFY_TYPE == KSIG_PENDING) {
message pmm;
pmm.NOTIFY_TYPE = KSIG_PENDING;
lock_notify(PM_PROC_NR, &pmm);
result = (*call_vec[m.m_type])(&m); /* handle the kernel call */
} else if (m.m_type == NEW_KSIG) {
lock_alert(SYSTEM, PM_PROC_NR); /* tell PM about signal */
continue;
} else {
kprintf("Warning, illegal SYSTASK request from %d.\n", m.m_source);
@ -94,7 +91,7 @@ PUBLIC void sys_task()
* is known to be blocked waiting for a message.
*/
if (result != EDONTREPLY) {
m.m_type = result; /* report status of call */
m.m_type = result; /* report status of call */
if (OK != lock_send(m.m_source, &m)) {
kprintf("Warning, SYSTASK couldn't reply to request from %d\n",
m.m_source);
@ -109,7 +106,7 @@ PUBLIC void sys_task()
*===========================================================================*/
PRIVATE void initialize(void)
{
register struct proc *rp;
register struct priv *sp;
int i;
/* Initialize IRQ handler hooks. Mark all hooks available. */
@ -118,8 +115,8 @@ PRIVATE void initialize(void)
}
/* Initialize all alarm timers for all processes. */
for (rp=BEG_PROC_ADDR; rp < END_PROC_ADDR; rp++) {
tmr_inittimer(&(rp->p_alarm_timer));
for (sp=BEG_PRIV_ADDR; sp < END_PRIV_ADDR; sp++) {
tmr_inittimer(&(sp->s_alarm_timer));
}
/* Initialize the call vector to a safe default handler. Some system calls
@ -132,23 +129,22 @@ PRIVATE void initialize(void)
}
/* Process management. */
map(SYS_FORK, do_fork); /* informs kernel that a process has forked */
map(SYS_XIT, do_xit); /* informs kernel that a process has exited */
map(SYS_NEWMAP, do_newmap); /* allows PM to set up a process memory map */
map(SYS_EXEC, do_exec); /* sets program counter and stack pointer after EXEC */
map(SYS_TRACE, do_trace); /* request a trace operation */
map(SYS_FORK, do_fork); /* a process forked a new process */
map(SYS_NEWMAP, do_newmap); /* set up a process memory map */
map(SYS_EXEC, do_exec); /* update process after execute */
map(SYS_EXIT, do_exit); /* clean up after process exit */
map(SYS_TRACE, do_trace); /* request a trace operation */
/* Signal handling. */
map(SYS_KILL, do_kill); /* cause a process to be signaled */
map(SYS_GETSIG, do_getsig); /* PM checks for pending signals */
map(SYS_ENDSIG, do_endsig); /* PM finished processing signal */
map(SYS_GETKSIG, do_getksig); /* PM checks for pending signals */
map(SYS_ENDKSIG, do_endksig); /* PM finished processing signal */
map(SYS_SIGSEND, do_sigsend); /* start POSIX-style signal */
map(SYS_SIGRETURN, do_sigreturn); /* return from POSIX-style signal */
/* Clock functionality. */
map(SYS_TIMES, do_times); /* get uptime and process times */
map(SYS_SIGNALRM, do_signalrm); /* causes an alarm signal */
map(SYS_SYNCALRM, do_syncalrm); /* send a notification message */
map(SYS_SETALARM, do_setalarm); /* schedule a synchronous alarm */
/* Device I/O. */
map(SYS_IRQCTL, do_irqctl); /* interrupt control operations */
@ -156,25 +152,60 @@ PRIVATE void initialize(void)
map(SYS_SDEVIO, do_sdevio); /* phys_insb, _insw, _outsb, _outsw */
map(SYS_VDEVIO, do_vdevio); /* vector with devio requests */
/* Server and driver control. */
/* System control. */
map(SYS_SETPRIORITY, do_schedctl); /* set scheduling priority */
map(SYS_SEGCTL, do_segctl); /* add segment and get selector */
map(SYS_IOPENABLE, do_iopenable); /* enable CPU I/O protection bits */
map(SYS_SVRCTL, do_svrctl); /* kernel control functions */
/* Copying. */
map(SYS_UMAP, do_umap); /* map virtual to physical address */
map(SYS_VIRCOPY, do_vircopy); /* use pure virtual addressing */
map(SYS_PHYSCOPY, do_physcopy); /* use physical addressing */
map(SYS_PHYSZERO, do_physzero); /* zero physical memory region */
map(SYS_VIRVCOPY, do_virvcopy); /* vector with copy requests */
map(SYS_PHYSVCOPY, do_physvcopy); /* vector with copy requests */
map(SYS_SETPRIORITY, do_setpriority); /* set scheduling priority */
map(SYS_MEMSET, do_memset); /* write char to memory area */
/* Miscellaneous. */
map(SYS_ABORT, do_abort); /* abort MINIX */
map(SYS_GETINFO, do_getinfo); /* request system information */
}
/*===========================================================================*
* init_proc *
*===========================================================================*/
PUBLIC int init_proc(proc_nr, proto_nr)
int proc_nr; /* slot of process to initialize */
int proto_nr; /* prototype process to copy from */
{
register struct proc *rc, *rp;
register struct priv *sp;
int i;
/* Get a pointer to the process to initialize. */
rc = proc_addr(proc_nr);
/* If there is a prototype process to initialize from, use it. Otherwise,
* assume the caller will take care of initialization, but make sure that
* the new process gets a pointer to a system properties structure.
*/
if (isokprocn(proto_nr)) {
kprintf("INIT proc from prototype %d\n", proto_nr);
} else {
for (sp = BEG_PRIV_ADDR, i = 0; sp < END_PRIV_ADDR; ++sp, ++i) {
if (sp->s_proc_nr == NONE) { /* found free slot */
sp->s_proc_nr = proc_nr; /* set association */
rc->p_priv = sp; /* assign to process */
return(OK);
}
}
kprintf("No free PRIV structure!\n", NO_NUM);
return(ENOSPC); /* out of resources */
}
}
/*===========================================================================*
* clear_proc *
*===========================================================================*/
@ -189,7 +220,7 @@ int proc_nr; /* slot of process to clean up */
rc = proc_addr(proc_nr);
/* Turn off any alarm timers at the clock. */
reset_timer(&rc->p_alarm_timer);
reset_timer(&rc->p_priv->s_alarm_timer);
/* Make sure the exiting process is no longer scheduled. */
if (rc->p_rts_flags == 0) lock_unready(rc);
@ -232,7 +263,6 @@ int proc_nr; /* slot of process to clean up */
kstrncpy(rc->p_name, "<none>", P_NAME_LEN); /* unset name */
sigemptyset(&rc->p_pending); /* remove pending signals */
rc->p_rts_flags = SLOT_FREE; /* announce slot empty */
rc->p_sendmask = DENY_ALL_MASK; /* set most restrictive mask */
#if (CHIP == M68000)
pmmu_delete(rc); /* we're done, remove tables */
@ -260,7 +290,7 @@ PUBLIC void get_randomness()
* On machines without RDTSC, we use the get_uptime() - read_clock()
* has a higher resolution, but would involve I/O calls.
*/
if(machine.processor > 486)
if (machine.processor > 486)
read_tsc(&tsc_high, &krandom.r_buf[krandom.r_next]);
else
krandom.r_buf[krandom.r_next] = get_uptime();
@ -278,18 +308,21 @@ irq_hook_t *hook;
/* This function handles hardware interrupt in a simple and generic way. All
* interrupts are transformed into messages to a driver. The IRQ line will be
* reenabled if the policy says so.
* In addition, the interrupt handler gathers random information in a buffer
* by timestamping the interrupts.
*/
message m;
/* Gather random information. */
/* As a side-effect, the interrupt handler gathers random information by
* timestamping the interrupt events. This is used for /dev/random.
*/
get_randomness();
/* Add a bit for this interrupt to the process' pending interrupts. When
* sending the notification message, this bit map will be magically set
* as an argument.
*/
priv(proc_addr(hook->proc_nr))->s_int_pending |= (1 << hook->irq);
/* Build notification message and return. */
m.NOTIFY_TYPE = HARD_INT;
m.NOTIFY_ARG = hook->irq;
lock_notify(hook->proc_nr, &m);
lock_alert(HARDWARE, hook->proc_nr);
return(hook->policy & IRQ_REENABLE);
}
@ -302,9 +335,9 @@ int proc_nr; /* process to be signalled */
int sig_nr; /* signal to be sent, 1 to _NSIG */
{
/* A system process wants to send a signal to a process. Examples are:
* TTY wanting to cause SIGINT upon getting a DEL
* CLOCK wanting to cause SIGALRM when timer expires
* FS wanting to cause SIGPIPE for a broken pipe
* - HARDWARE wanting to cause a SIGSEGV after a CPU exception
* - TTY wanting to cause SIGINT upon getting a DEL
* - FS wanting to cause SIGPIPE for a broken pipe
* Signals are handled by sending a message to PM. This function handles the
* signals and makes sure the PM gets them by sending a notification. The
* process being signaled is blocked while PM has not finished all signals
@ -313,7 +346,6 @@ int sig_nr; /* signal to be sent, 1 to _NSIG */
* PM can block waiting for FS to do a core dump.
*/
register struct proc *rp;
message m;
/* Check if the signal is already pending. Process it otherwise. */
rp = proc_addr(proc_nr);
@ -322,8 +354,7 @@ int sig_nr; /* signal to be sent, 1 to _NSIG */
if (! (rp->p_rts_flags & SIGNALED)) { /* other pending */
if (rp->p_rts_flags == 0) lock_unready(rp); /* make not ready */
rp->p_rts_flags |= SIGNALED | SIG_PENDING; /* update flags */
m.NOTIFY_TYPE = KSIG_PENDING;
lock_notify(SYSTASK, &m);
lock_alert(HARDWARE, SYSTEM);
}
}
}
@ -370,7 +401,6 @@ vir_bytes vir_addr; /* virtual address in bytes within the seg */
vir_bytes bytes; /* # of bytes to be copied */
{
/* Calculate the physical memory address for a given virtual address. */
vir_clicks vc; /* the virtual address in clicks */
phys_bytes pa; /* intermediate variables as phys_bytes */
#if (CHIP == INTEL)
@ -451,7 +481,7 @@ vir_bytes bytes; /* # of bytes to be copied */
if (bytes <= 0) return( (phys_bytes) 0);
if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
fm = &rp->p_farmem[seg];
fm = &rp->p_priv->s_farmem[seg];
if (! fm->in_use) return( (phys_bytes) 0);
if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);

View file

@ -1,60 +1,151 @@
/* Function prototypes for the system library. The implementation is contained
* in src/kernel/system/. The system library allows to access system services
* by doing a system call. System calls are transformed into request messages
* to the SYS task that is responsible for handling the call. By convention, a
* sys_call() is transformed into a message with type SYS_CALL that is handled
* in a function named do_call().
/* Function prototypes for the system library. The prototypes in this file
* are undefined to do_unused if the kernel call is not enabled in config.h.
* The implementation is contained in src/kernel/system/.
*
* The system library allows to access system services by doing a system call.
* System calls are transformed into request messages to the SYS task that is
* responsible for handling the call. By convention, sys_call() is transformed
* into a message with type SYS_CALL that is handled in a function do_call().
*/
#ifndef SYSTEM_H
#define SYSTEM_H
/* Common includes for the system library. */
#include <minix/com.h>
#include <minix/config.h>
#include "kernel.h"
#include "proc.h"
_PROTOTYPE( int do_exec, (message *m_ptr) ); /* process control */
_PROTOTYPE( int do_fork, (message *m_ptr) );
_PROTOTYPE( int do_newmap, (message *m_ptr) );
_PROTOTYPE( int do_xit, (message *m_ptr) );
/* Default handler for unused kernel calls. */
_PROTOTYPE( int do_unused, (message *m_ptr) );
_PROTOTYPE( int do_copy, (message *m_ptr) ); /* copying */
_PROTOTYPE( int do_exec, (message *m_ptr) );
#if ! USE_EXEC
#define do_exec do_unused
#endif
_PROTOTYPE( int do_fork, (message *m_ptr) );
#if ! USE_FORK
#define do_fork do_unused
#endif
_PROTOTYPE( int do_newmap, (message *m_ptr) );
#if ! USE_NEWMAP
#define do_newmap do_unused
#endif
_PROTOTYPE( int do_exit, (message *m_ptr) );
#if ! USE_EXIT
#define do_exit do_unused
#endif
_PROTOTYPE( int do_trace, (message *m_ptr) );
#if ! USE_TRACE
#define do_trace do_unused
#endif
_PROTOTYPE( int do_schedctl, (message *m_ptr) );
#if ! USE_SCHEDCTL
#define do_schedctl do_unused
#endif
_PROTOTYPE( int do_copy, (message *m_ptr) );
#define do_vircopy do_copy
#define do_physcopy do_copy
#if ! (USE_VIRCOPY || USE_PHYSCOPY)
#define do_copy do_unused
#endif
_PROTOTYPE( int do_vcopy, (message *m_ptr) );
#define do_virvcopy do_vcopy
#define do_physvcopy do_vcopy
#if ! (USE_VIRVCOPY || USE_PHYSVCOPY)
#define do_vcopy do_unused
#endif
_PROTOTYPE( int do_umap, (message *m_ptr) );
_PROTOTYPE( int do_physzero, (message *m_ptr) );
#if ! USE_UMAP
#define do_umap do_unused
#endif
_PROTOTYPE( int do_memset, (message *m_ptr) );
#if ! USE_MEMSET
#define do_memset do_unused
#endif
_PROTOTYPE( int do_unused, (message *m_ptr) ); /* miscellaneous */
_PROTOTYPE( int do_abort, (message *m_ptr) );
#if ! USE_ABORT
#define do_abort do_unused
#endif
_PROTOTYPE( int do_getinfo, (message *m_ptr) );
#if ! USE_GETINFO
#define do_getinfo do_unused
#endif
_PROTOTYPE( int do_svrctl, (message *m_ptr) );
#if ! USE_SVRCTL
#define do_svrctl do_unused
#endif
_PROTOTYPE( int do_svrctl, (message *m_ptr) ); /* system control */
_PROTOTYPE( int do_iopenable, (message *m_ptr) );
_PROTOTYPE( int do_segctl, (message *m_ptr) );
#if ! USE_SEGCTL
#define do_segctl do_unused
#endif
_PROTOTYPE( int do_irqctl, (message *m_ptr) );
#if ! USE_IRQCTL
#define do_irqctl do_unused
#endif
_PROTOTYPE( int do_irqctl, (message *m_ptr) ); /* device I/O */
_PROTOTYPE( int do_devio, (message *m_ptr) );
#if ! USE_DEVIO
#define do_devio do_unused
#endif
_PROTOTYPE( int do_vdevio, (message *m_ptr) );
#if ! USE_VDEVIO
#define do_vdevio do_unused
#endif
_PROTOTYPE( int do_sdevio, (message *m_ptr) );
#if ! USE_SDEVIO
#define do_sdevio do_unused
#endif
_PROTOTYPE( int do_kill, (message *m_ptr) );
#if ! USE_KILL
#define do_kill do_unused
#endif
_PROTOTYPE( int do_getksig, (message *m_ptr) );
#if ! USE_GETKSIG
#define do_getksig do_unused
#endif
_PROTOTYPE( int do_endksig, (message *m_ptr) );
#if ! USE_ENDKSIG
#define do_endksig do_unused
#endif
_PROTOTYPE( int do_kill, (message *m_ptr) ); /* signal handling */
_PROTOTYPE( int do_getsig, (message *m_ptr) );
_PROTOTYPE( int do_endsig, (message *m_ptr) );
_PROTOTYPE( int do_sigsend, (message *m_ptr) );
#if ! USE_SIGSEND
#define do_sigsend do_unused
#endif
_PROTOTYPE( int do_sigreturn, (message *m_ptr) );
_PROTOTYPE( int do_setpriority, (message *m_ptr) );
#if ! USE_SIGRETURN
#define do_sigreturn do_unused
#endif
_PROTOTYPE( int do_times, (message *m_ptr) );
#if ! USE_TIMES
#define do_times do_unused
#endif
_PROTOTYPE( int do_times, (message *m_ptr) ); /* clock functions */
_PROTOTYPE( int do_setalarm, (message *m_ptr) );
#define do_flagalrm do_setalarm
#define do_signalrm do_setalarm
#define do_syncalrm do_setalarm
_PROTOTYPE( int do_trace, (message *m_ptr) ); /* process tracing */
#if ! USE_SETALARM
#define do_setalarm do_unused
#endif
#endif /* SYSTEM_H */

View file

@ -5,20 +5,50 @@ u = /usr
i = $u/include
# Programs, flags, etc.
CC = exec cc
CC = exec cc $(CFLAGS) -c
CPP = $l/cpp
LD = $(CC) -.o
CFLAGS = -I$i
LDFLAGS = -i
SYS = clock.o copying.o debugging.o devio.o irqctl.o proctl.o \
sysctl.o misc.o sigctl.o tracing.o priority.o
SYSTEM = ../system.a
# What to make.
all build: $(SYS)
all build install: $(SYSTEM)
OBJECTS = \
$(SYSTEM)(do_unused.o) \
$(SYSTEM)(do_fork.o) \
$(SYSTEM)(do_exec.o) \
$(SYSTEM)(do_newmap.o) \
$(SYSTEM)(do_exit.o) \
$(SYSTEM)(do_trace.o) \
$(SYSTEM)(do_schedctl.o) \
$(SYSTEM)(do_times.o) \
$(SYSTEM)(do_alarm.o) \
$(SYSTEM)(do_irqctl.o) \
$(SYSTEM)(do_devio.o) \
$(SYSTEM)(do_vdevio.o) \
$(SYSTEM)(do_sdevio.o) \
$(SYSTEM)(do_copy.o) \
$(SYSTEM)(do_vcopy.o) \
$(SYSTEM)(do_umap.o) \
$(SYSTEM)(do_memset.o) \
$(SYSTEM)(do_svrctl.o) \
$(SYSTEM)(do_segctl.o) \
$(SYSTEM)(do_getksig.o) \
$(SYSTEM)(do_endksig.o) \
$(SYSTEM)(do_kill.o) \
$(SYSTEM)(do_sigsend.o) \
$(SYSTEM)(do_sigreturn.o) \
$(SYSTEM)(do_abort.o) \
$(SYSTEM)(do_getinfo.o) \
$(SYSTEM): $(OBJECTS)
aal cr $@ *.o
clean:
rm -f *.a *.o *.bak
rm -f $(SYSTEM) *.o *.bak
depend:
/usr/bin/mkdep "$(CC) -E $(CPPFLAGS)" *.c > .depend
@ -27,4 +57,81 @@ depend:
include .depend
$(SYSTEM)(do_unused.o): do_unused.c
$(CC) do_unused.c
$(SYSTEM)(do_fork.o): do_fork.c
$(CC) do_fork.c
$(SYSTEM)(do_exec.o): do_exec.c
$(CC) do_exec.c
$(SYSTEM)(do_newmap.o): do_newmap.c
$(CC) do_newmap.c
$(SYSTEM)(do_exit.o): do_exit.c
$(CC) do_exit.c
$(SYSTEM)(do_trace.o): do_trace.c
$(CC) do_trace.c
$(SYSTEM)(do_schedctl.o): do_schedctl.c
$(CC) do_schedctl.c
$(SYSTEM)(do_times.o): do_times.c
$(CC) do_times.c
$(SYSTEM)(do_alarm.o): do_alarm.c
$(CC) do_alarm.c
$(SYSTEM)(do_irqctl.o): do_irqctl.c
$(CC) do_irqctl.c
$(SYSTEM)(do_devio.o): do_devio.c
$(CC) do_devio.c
$(SYSTEM)(do_sdevio.o): do_sdevio.c
$(CC) do_sdevio.c
$(SYSTEM)(do_vdevio.o): do_vdevio.c
$(CC) do_vdevio.c
$(SYSTEM)(do_copy.o): do_copy.c
$(CC) do_copy.c
$(SYSTEM)(do_vcopy.o): do_vcopy.c
$(CC) do_vcopy.c
$(SYSTEM)(do_umap.o): do_umap.c
$(CC) do_umap.c
$(SYSTEM)(do_memset.o): do_memset.c
$(CC) do_memset.c
$(SYSTEM)(do_getksig.o): do_getksig.c
$(CC) do_getksig.c
$(SYSTEM)(do_endksig.o): do_endksig.c
$(CC) do_endksig.c
$(SYSTEM)(do_kill.o): do_kill.c
$(CC) do_kill.c
$(SYSTEM)(do_sigsend.o): do_sigsend.c
$(CC) do_sigsend.c
$(SYSTEM)(do_sigreturn.o): do_sigreturn.c
$(CC) do_sigreturn.c
$(SYSTEM)(do_getinfo.o): do_getinfo.c
$(CC) do_getinfo.c
$(SYSTEM)(do_abort.o): do_abort.c
$(CC) do_abort.c
$(SYSTEM)(do_svrctl.o): do_svrctl.c
$(CC) do_svrctl.c
$(SYSTEM)(do_segctl.o): do_segctl.c
$(CC) do_segctl.c

View file

@ -1,138 +0,0 @@
/* The system call implemented in this file:
* m_type: SYS_TIMES
*
* The parameters for this system call are:
* m4_l1: T_PROC_NR (get info for this process)
* m4_l1: T_USER_TIME (return values ...)
* m4_l2: T_SYSTEM_TIME
* m4_l5: T_BOOT_TICKS
*/
#include "../kernel.h"
#include "../system.h"
#include "../debug.h"
#include <signal.h>
/*===========================================================================*
* do_times *
*===========================================================================*/
PUBLIC int do_times(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_times(). Retrieve the accounting information. */
register struct proc *rp;
int proc_nr;
/* Insert the times needed by the SYS_TIMES system call in the message. */
proc_nr = (m_ptr->T_PROC_NR == SELF) ? m_ptr->m_source : m_ptr->T_PROC_NR;
if (isokprocn(proc_nr)) {
rp = proc_addr(m_ptr->T_PROC_NR);
lock(11, "do_times"); /* halt the volatile time counters in rp */
m_ptr->T_USER_TIME = rp->p_user_time;
m_ptr->T_SYSTEM_TIME = rp->p_sys_time;
unlock(11);
}
m_ptr->T_BOOT_TICKS = get_uptime();
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_SIGNALRM, SYS_SYNCALRM
*
* The parameters for this system call are:
* m2_i1: ALRM_PROC_NR (set alarm for this process)
* m2_l1: ALRM_EXP_TIME (alarm's expiration time)
* m2_i2: ALRM_ABS_TIME (expiration time is absolute?)
* m2_l1: ALRM_SEC_LEFT (return seconds left of previous)
*
* Changes:
* Aug 25, 2004 fully rewritten to clean up code (Jorrit N. Herder)
*/
FORWARD _PROTOTYPE( void cause_syncalrm, (timer_t *tp) );
FORWARD _PROTOTYPE( void cause_signalrm, (timer_t *tp) );
/*===========================================================================*
* do_setalarm *
*===========================================================================*/
PUBLIC int do_setalarm(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* A process requests an alarm, or wants to cancel its alarm. This function
* is shared used for both the SYS_SIGNALRM and SYS_SYNCALRM.
*/
int proc_nr; /* which process wants the alarm */
long exp_time; /* expiration time for this alarm */
int use_abs_time; /* use absolute or relative time */
timer_t *tp; /* the process' timer structure */
clock_t uptime; /* placeholder for current uptime */
/* Extract shared parameters from the request message. */
proc_nr = m_ptr->ALRM_PROC_NR; /* process to interrupt later */
if (SELF == proc_nr) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
exp_time = m_ptr->ALRM_EXP_TIME; /* alarm's expiration time */
use_abs_time = m_ptr->ALRM_ABS_TIME; /* flag for absolute time */
/* Get the timer structure and set the parameters for this alarm. */
tp = &(proc_addr(proc_nr)->p_alarm_timer);
tmr_arg(tp)->ta_int = proc_nr;
switch (m_ptr->m_type) {
case SYS_SYNCALRM: tp->tmr_func = cause_syncalrm; break;
case SYS_SIGNALRM: tp->tmr_func = cause_signalrm; break;
default: return(EINVAL); /* invalid alarm type */
}
/* Return the ticks left on the previous alarm. */
uptime = get_uptime();
if ((tp->tmr_exp_time == TMR_NEVER) || (tp->tmr_exp_time < uptime) ) {
m_ptr->ALRM_TIME_LEFT = 0;
} else {
m_ptr->ALRM_TIME_LEFT = (tp->tmr_exp_time - uptime);
}
/* Finally, (re)set the timer depending on 'exp_time'. */
if (exp_time == 0) {
reset_timer(tp);
} else {
tp->tmr_exp_time = (use_abs_time) ? exp_time : exp_time + get_uptime();
set_timer(tp, tp->tmr_exp_time, tp->tmr_func);
}
return(OK);
}
/*===========================================================================*
* cause_signalrm *
*===========================================================================*/
PRIVATE void cause_signalrm(tp)
timer_t *tp;
{
/* Routine called if a timer goes off for a process that requested an SIGALRM
* signal using the alarm(2) system call. The timer argument 'ta_int' contains
* the process number of the process to signal.
*/
cause_sig(tmr_arg(tp)->ta_int, SIGALRM);
}
/*===========================================================================*
* cause_syncalrm *
*===========================================================================*/
PRIVATE void cause_syncalrm(tp)
timer_t *tp;
{
/* Routine called if a timer goes off and the process requested a synchronous
* alarm. The process number is stored in timer argument 'ta_int'. Notify that
* process given with a SYN_ALARM message.
*/
message m;
m.NOTIFY_TYPE = SYN_ALARM;
m.NOTIFY_ARG = get_uptime();
m.NOTIFY_FLAGS = 0;
lock_notify(tmr_arg(tp)->ta_int, &m);
}

View file

@ -1,176 +0,0 @@
/* The system call implemented in this file:
* m_type: SYS_VIRCOPY, SYS_PHYSCOPY, SYS_PHYSZERO
*
* The parameters for this system call are:
* m5_c1: CP_SRC_SPACE
* m5_l1: CP_SRC_ADDR
* m5_i1: CP_SRC_PROC_NR
* m5_c2: CP_DST_SPACE
* m5_l2: CP_DST_ADDR
* m5_i2: CP_DST_PROC_NR
* m5_l3: CP_NR_BYTES
*/
#include "../kernel.h"
#include "../system.h"
#include <minix/type.h>
/*===========================================================================*
* do_copy *
*===========================================================================*/
PUBLIC int do_copy(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_vircopy() and sys_physcopy(). Copy data using virtual or
* physical addressing.
*/
struct vir_addr vir_addr[2]; /* virtual source and destination address */
vir_bytes bytes; /* number of bytes to copy */
int i;
/* Dismember the command message. */
vir_addr[_SRC_].proc_nr = m_ptr->CP_SRC_PROC_NR;
vir_addr[_SRC_].segment = m_ptr->CP_SRC_SPACE;
vir_addr[_SRC_].offset = (vir_bytes) m_ptr->CP_SRC_ADDR;
vir_addr[_DST_].proc_nr = m_ptr->CP_DST_PROC_NR;
vir_addr[_DST_].segment = m_ptr->CP_DST_SPACE;
vir_addr[_DST_].offset = (vir_bytes) m_ptr->CP_DST_ADDR;
bytes = (phys_bytes) m_ptr->CP_NR_BYTES;
/* Now do some checks for both the source and destination virtual address.
* This is done once for _SRC_, then once for _DST_.
*/
for (i=_SRC_; i<=_DST_; i++) {
/* Check if process number was given implictly with SELF and is valid. */
if (vir_addr[i].proc_nr == SELF) vir_addr[i].proc_nr = m_ptr->m_source;
if (! isokprocn(vir_addr[i].proc_nr) && vir_addr[i].segment != PHYS_SEG) {
kprintf("do_vircopy: illegal proc nr, while not phys addr\n",NO_NUM);
return(EINVAL);
}
/* Check if physical addressing is used without SYS_PHYSCOPY. */
if ((vir_addr[i].segment & PHYS_SEG) &&
m_ptr->m_type != SYS_PHYSCOPY) return(EPERM);
}
/* Check for overflow. This would happen for 64K segments and 16-bit
* vir_bytes. Especially copying by the PM on do_fork() is affected.
*/
if (bytes != (vir_bytes) bytes) {
kprintf("do_vircopy: overflow\n", NO_NUM);
return(E2BIG);
}
/* Now try to make the actual virtual copy. */
return( virtual_copy(&vir_addr[_SRC_], &vir_addr[_DST_], bytes) );
}
/* Buffer to hold copy request vector from user. */
PRIVATE struct vir_cp_req vir_cp_req[VCOPY_VEC_SIZE];
/*===========================================================================*
* do_vcopy *
*===========================================================================*/
PUBLIC int do_vcopy(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_virvcopy(). Handle virtual copy requests from vector. */
int nr_req;
int caller_pid;
vir_bytes caller_vir;
phys_bytes caller_phys;
phys_bytes kernel_phys;
phys_bytes bytes;
int i,s;
struct vir_cp_req *req;
/* Check if request vector size is ok. */
nr_req = (unsigned) m_ptr->VCP_VEC_SIZE;
if (nr_req > VCOPY_VEC_SIZE) return(EINVAL);
bytes = nr_req * sizeof(struct vir_cp_req);
/* Calculate physical addresses and copy (port,value)-pairs from user. */
caller_pid = (int) m_ptr->m_source;
caller_vir = (vir_bytes) m_ptr->VCP_VEC_ADDR;
caller_phys = umap_local(proc_addr(caller_pid), D, caller_vir, bytes);
if (0 == caller_phys) return(EFAULT);
kernel_phys = vir2phys(vir_cp_req);
phys_copy(caller_phys, kernel_phys, (phys_bytes) bytes);
/* Assume vector with requests is correct. Try to copy everything. */
for (i=0; i<nr_req; i++) {
req = &vir_cp_req[i];
/* Check if physical addressing is used without SYS_PHYSVCOPY. */
if (((req->src.segment | req->dst.segment) & PHYS_SEG) &&
m_ptr->m_type != SYS_PHYSVCOPY)
return(EPERM);
if ((s=virtual_copy(&req->src, &req->dst, req->count)) != OK)
return(s);
}
return(OK);
}
/*===========================================================================*
* do_physzero *
*===========================================================================*/
PUBLIC int do_physzero(m_ptr)
register message *m_ptr;
{
/* Handle sys_physzero(). */
phys_zero((phys_bytes) m_ptr->PZ_MEM_PTR, (phys_bytes) m_ptr->PZ_COUNT);
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_UMAP
*
* The parameters for this system call are:
* m5_i1: CP_SRC_PROC_NR (process number)
* m5_c1: CP_SRC_SPACE (segment where address is: T, D, or S)
* m5_l1: CP_SRC_ADDR (virtual address)
* m5_l2: CP_DST_ADDR (returns physical address)
* m5_l3: CP_NR_BYTES (size of datastructure)
*/
/*==========================================================================*
* do_umap *
*==========================================================================*/
PUBLIC int do_umap(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Map virtual address to physical, for non-kernel processes. */
int seg_type = m_ptr->CP_SRC_SPACE & SEGMENT_TYPE;
int seg_index = m_ptr->CP_SRC_SPACE & SEGMENT_INDEX;
vir_bytes offset = m_ptr->CP_SRC_ADDR;
int count = m_ptr->CP_NR_BYTES;
int proc_nr = (int) m_ptr->CP_SRC_PROC_NR;
phys_bytes phys_addr;
/* Verify process number. */
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
/* See which mapping should be made. */
switch(seg_type) {
case LOCAL_SEG:
phys_addr = umap_local(proc_addr(proc_nr), seg_index, offset, count);
break;
case REMOTE_SEG:
phys_addr = umap_remote(proc_addr(proc_nr), seg_index, offset, count);
break;
case BIOS_SEG:
phys_addr = umap_bios(proc_addr(proc_nr), offset, count);
break;
default:
return(EINVAL);
}
m_ptr->CP_DST_ADDR = phys_addr;
return (phys_addr == 0) ? EFAULT: OK;
}

46
kernel/system/do_abort.c Normal file
View file

@ -0,0 +1,46 @@
#include "../system.h"
#include <unistd.h>
/* The system call implemented in this file:
* m_type: SYS_ABORT
*
* The parameters for this system call are:
* m1_i1: ABRT_HOW (how to abort, possibly fetch monitor params)
* m1_i2: ABRT_MON_PROC (proc nr to get monitor params from)
* m1_i3: ABRT_MON_LEN (length of monitor params)
* m1_p1: ABRT_MON_ADDR (virtual address of params)
*/
#if USE_ABORT
/*===========================================================================*
* do_abort *
*===========================================================================*/
PUBLIC int do_abort(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_abort. MINIX is unable to continue. This can originate in the
* PM (normal abort or panic) or FS (panic), or TTY (user issued CTRL-ALT-DEL
* or ESC after debugging dumps).
*/
int how = m_ptr->ABRT_HOW;
if (how == RBT_MONITOR) {
/* The monitor is to run the specified instructions. */
int proc_nr = m_ptr->ABRT_MON_PROC;
int length = m_ptr->ABRT_MON_LEN + 1;
vir_bytes src_vir = (vir_bytes) m_ptr->ABRT_MON_ADDR;
phys_bytes src_phys = numap_local(proc_nr, src_vir, length);
/* Validate length and address of shutdown code before copying. */
if (length > kinfo.params_size || src_phys == 0)
phys_copy(vir2phys("delay;boot"), kinfo.params_base, 11);
else
phys_copy(src_phys, kinfo.params_base, (phys_bytes) length);
}
prepare_shutdown(how);
return(OK); /* pro-forma (really EDISASTER) */
}
#endif /* USE_ABORT */

77
kernel/system/do_alarm.c Normal file
View file

@ -0,0 +1,77 @@
/* The system call implemented in this file:
* m_type: SYS_SETALARM
*
* The parameters for this system call are:
* m2_i1: ALRM_PROC_NR (set alarm for this process)
* m2_l1: ALRM_EXP_TIME (alarm's expiration time)
* m2_i2: ALRM_ABS_TIME (expiration time is absolute?)
* m2_l1: ALRM_SEC_LEFT (return seconds left of previous)
*
* Changes:
* Aug 25, 2004 fully rewritten to clean up code (Jorrit N. Herder)
*/
#include "../system.h"
#if USE_SETALARM
FORWARD _PROTOTYPE( void cause_alarm, (timer_t *tp) );
/*===========================================================================*
* do_setalarm *
*===========================================================================*/
PUBLIC int do_setalarm(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* A process requests a synchronous alarm, or wants to cancel its alarm. */
int proc_nr; /* which process wants the alarm */
long exp_time; /* expiration time for this alarm */
int use_abs_time; /* use absolute or relative time */
timer_t *tp; /* the process' timer structure */
clock_t uptime; /* placeholder for current uptime */
/* Extract shared parameters from the request message. */
proc_nr = m_ptr->ALRM_PROC_NR; /* process to interrupt later */
if (SELF == proc_nr) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
exp_time = m_ptr->ALRM_EXP_TIME; /* alarm's expiration time */
use_abs_time = m_ptr->ALRM_ABS_TIME; /* flag for absolute time */
/* Get the timer structure and set the parameters for this alarm. */
tp = &(proc_addr(proc_nr)->p_priv->s_alarm_timer);
tmr_arg(tp)->ta_int = proc_nr;
tp->tmr_func = cause_alarm;
/* Return the ticks left on the previous alarm. */
uptime = get_uptime();
if ((tp->tmr_exp_time == TMR_NEVER) || (tp->tmr_exp_time < uptime) ) {
m_ptr->ALRM_TIME_LEFT = 0;
} else {
m_ptr->ALRM_TIME_LEFT = (tp->tmr_exp_time - uptime);
}
/* Finally, (re)set the timer depending on 'exp_time'. */
if (exp_time == 0) {
reset_timer(tp);
} else {
tp->tmr_exp_time = (use_abs_time) ? exp_time : exp_time + get_uptime();
set_timer(tp, tp->tmr_exp_time, tp->tmr_func);
}
return(OK);
}
/*===========================================================================*
* cause_alarm *
*===========================================================================*/
PRIVATE void cause_alarm(tp)
timer_t *tp;
{
/* Routine called if a timer goes off and the process requested a synchronous
* alarm. The process number is stored in timer argument 'ta_int'. Notify that
* process given with a SYN_ALARM message.
*/
lock_alert(CLOCK, tmr_arg(tp)->ta_int);
}
#endif /* USE_SETALARM */

71
kernel/system/do_copy.c Normal file
View file

@ -0,0 +1,71 @@
/* The system call implemented in this file:
* m_type: SYS_VIRCOPY, SYS_PHYSCOPY
*
* The parameters for this system call are:
* m5_c1: CP_SRC_SPACE
* m5_l1: CP_SRC_ADDR
* m5_i1: CP_SRC_PROC_NR
* m5_c2: CP_DST_SPACE
* m5_l2: CP_DST_ADDR
* m5_i2: CP_DST_PROC_NR
* m5_l3: CP_NR_BYTES
*/
#include "../system.h"
#include <minix/type.h>
#if (USE_VIRCOPY || USE_PHYSCOPY)
/*===========================================================================*
* do_copy *
*===========================================================================*/
PUBLIC int do_copy(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_vircopy() and sys_physcopy(). Copy data using virtual or
* physical addressing.
*/
struct vir_addr vir_addr[2]; /* virtual source and destination address */
vir_bytes bytes; /* number of bytes to copy */
int i;
/* Dismember the command message. */
vir_addr[_SRC_].proc_nr = m_ptr->CP_SRC_PROC_NR;
vir_addr[_SRC_].segment = m_ptr->CP_SRC_SPACE;
vir_addr[_SRC_].offset = (vir_bytes) m_ptr->CP_SRC_ADDR;
vir_addr[_DST_].proc_nr = m_ptr->CP_DST_PROC_NR;
vir_addr[_DST_].segment = m_ptr->CP_DST_SPACE;
vir_addr[_DST_].offset = (vir_bytes) m_ptr->CP_DST_ADDR;
bytes = (phys_bytes) m_ptr->CP_NR_BYTES;
/* Now do some checks for both the source and destination virtual address.
* This is done once for _SRC_, then once for _DST_.
*/
for (i=_SRC_; i<=_DST_; i++) {
/* Check if process number was given implictly with SELF and is valid. */
if (vir_addr[i].proc_nr == SELF) vir_addr[i].proc_nr = m_ptr->m_source;
if (! isokprocn(vir_addr[i].proc_nr) && vir_addr[i].segment != PHYS_SEG) {
kprintf("do_vircopy: illegal proc nr, while not phys addr\n",NO_NUM);
return(EINVAL);
}
/* Check if physical addressing is used without SYS_PHYSCOPY. */
if ((vir_addr[i].segment & PHYS_SEG) &&
m_ptr->m_type != SYS_PHYSCOPY) return(EPERM);
}
/* Check for overflow. This would happen for 64K segments and 16-bit
* vir_bytes. Especially copying by the PM on do_fork() is affected.
*/
if (bytes != (vir_bytes) bytes) {
kprintf("do_vircopy: overflow\n", NO_NUM);
return(E2BIG);
}
/* Now try to make the actual virtual copy. */
return( virtual_copy(&vir_addr[_SRC_], &vir_addr[_DST_], bytes) );
}
#endif /* (USE_VIRCOPY || USE_PHYSCOPY) */

44
kernel/system/do_devio.c Normal file
View file

@ -0,0 +1,44 @@
/* The system call implemented in this file:
* m_type: SYS_DEVIO
*
* The parameters for this system call are:
* m2_i3: DIO_REQUEST (request input or output)
* m2_i1: DIO_TYPE (flag indicating byte, word, or long)
* m2_l1: DIO_PORT (port to read/ write)
* m2_l2: DIO_VALUE (value to write/ return value read)
*
* Author:
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
#include "../system.h"
#include <minix/devio.h>
#if USE_DEVIO
/*===========================================================================*
* do_devio *
*===========================================================================*/
PUBLIC int do_devio(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Perform actual device I/O for byte, word, and long values. */
if (m_ptr->DIO_REQUEST == DIO_INPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: m_ptr->DIO_VALUE = inb(m_ptr->DIO_PORT); break;
case DIO_WORD: m_ptr->DIO_VALUE = inw(m_ptr->DIO_PORT); break;
case DIO_LONG: m_ptr->DIO_VALUE = inl(m_ptr->DIO_PORT); break;
default: return(EINVAL);
}
} else {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: outb(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
case DIO_WORD: outw(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
case DIO_LONG: outl(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
default: return(EINVAL);
}
}
return(OK);
}
#endif /* USE_DEVIO */

View file

@ -0,0 +1,49 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
#if USE_ENDKSIG
/*===========================================================================*
* do_endksig *
*===========================================================================*/
PUBLIC int do_endksig(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Finish up after a kernel type signal, caused by a SYS_KILL message or a
* call to cause_sig by a task. This is called by the PM after processing a
* signal it got with SYS_GETKSIG.
*/
register struct proc *rp;
rp = proc_addr(m_ptr->SIG_PROC);
if (isemptyp(rp)) return(EINVAL); /* process already dead? */
/* PM has finished one kernel signal. Perhaps process is ready now? */
if (! (rp->p_rts_flags & SIGNALED)) /* new signal arrived */
if ((rp->p_rts_flags &= ~SIG_PENDING)==0) /* remove pending flag */
lock_ready(rp); /* ready if no flags */
return(OK);
}
#endif /* USE_ENDKSIG */

63
kernel/system/do_exec.c Normal file
View file

@ -0,0 +1,63 @@
/* The system call implemented in this file:
* m_type: SYS_EXEC
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (process that did exec call)
* m1_i3: PR_TRACING (flag to indicate tracing is on/ off)
* m1_p1: PR_STACK_PTR (new stack pointer)
* m1_p2: PR_NAME_PTR (pointer to program name)
* m1_p3: PR_IP_PTR (new instruction pointer)
*/
#include "../system.h"
#include <signal.h>
#if USE_EXEC
/*===========================================================================*
* do_exec *
*===========================================================================*/
PUBLIC int do_exec(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_exec(). A process has done a successful EXEC. Patch it up. */
register struct proc *rp;
reg_t sp; /* new sp */
phys_bytes phys_name;
char *np;
rp = proc_addr(m_ptr->PR_PROC_NR);
if (m_ptr->PR_TRACING) cause_sig(m_ptr->PR_PROC_NR, SIGTRAP);
sp = (reg_t) m_ptr->PR_STACK_PTR;
rp->p_reg.sp = sp; /* set the stack pointer */
#if (CHIP == M68000)
rp->p_splow = sp; /* set the stack pointer low water */
#ifdef FPP
/* Initialize fpp for this process */
fpp_new_state(rp);
#endif
#endif
#if (CHIP == INTEL) /* wipe extra LDT entries */
kmemset(&rp->p_ldt[EXTRA_LDT_INDEX], 0,
(LDT_SIZE - EXTRA_LDT_INDEX) * sizeof(rp->p_ldt[0]));
#endif
rp->p_reg.pc = (reg_t) m_ptr->PR_IP_PTR; /* set pc */
rp->p_rts_flags &= ~RECEIVING; /* PM does not reply to EXEC call */
if (rp->p_rts_flags == 0) lock_ready(rp);
/* Save command name for debugging, ps(1) output, etc. */
phys_name = numap_local(m_ptr->m_source, (vir_bytes) m_ptr->PR_NAME_PTR,
(vir_bytes) P_NAME_LEN - 1);
if (phys_name != 0) {
phys_copy(phys_name, vir2phys(rp->p_name), (phys_bytes) P_NAME_LEN - 1);
for (np = rp->p_name; (*np & BYTE) >= ' '; np++) {}
*np = 0; /* mark end */
} else {
kstrncpy(rp->p_name, "<unset>", P_NAME_LEN);
}
return(OK);
}
#endif /* USE_EXEC */

42
kernel/system/do_exit.c Normal file
View file

@ -0,0 +1,42 @@
/* The system call implemented in this file:
* m_type: SYS_EXIT
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (slot number of exiting process)
*/
#include "../system.h"
#if USE_EXIT
/*===========================================================================*
* do_exit *
*===========================================================================*/
PUBLIC int do_exit(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_exit. A user process has exited or a system process requests
* to exit. Only the PM can request other process slots to be cleared.
* The routine to clean up a process table slot cancels outstanding timers,
* possibly removes the process from the message queues, and resets certain
* process table fields to the default values.
*/
int exit_proc_nr;
/* Determine what process exited. User processes are handled here. */
if (PM_PROC_NR == m_ptr->m_source) {
exit_proc_nr = m_ptr->PR_PROC_NR; /* get exiting process */
if (exit_proc_nr != SELF) { /* PM tries to exit self */
if (! isokprocn(exit_proc_nr)) return(EINVAL);
clear_proc(exit_proc_nr); /* exit a user process */
return(OK); /* report back to PM */
}
}
/* The PM or some other system process requested to be exited. */
clear_proc(m_ptr->m_source);
return(EDONTREPLY);
}
#endif /* USE_EXIT */

62
kernel/system/do_fork.c Normal file
View file

@ -0,0 +1,62 @@
/* The system call implemented in this file:
* m_type: SYS_FORK
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (child's process table slot)
* m1_i2: PR_PPROC_NR (parent, process that forked)
* m1_i3: PR_PID (child pid received from PM)
*/
#include "../system.h"
#include <signal.h>
#if (CHIP == INTEL)
#include "../protect.h"
#endif
#if USE_FORK
/*===========================================================================*
* do_fork *
*===========================================================================*/
PUBLIC int do_fork(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_fork(). PR_PPROC_NR has forked. The child is PR_PROC_NR. */
#if (CHIP == INTEL)
reg_t old_ldt_sel;
#endif
register struct proc *rpc;
struct proc *rpp;
rpp = proc_addr(m_ptr->PR_PPROC_NR);
rpc = proc_addr(m_ptr->PR_PROC_NR);
if (! isemptyp(rpc)) return(EINVAL);
/* Copy parent 'proc' struct to child. */
#if (CHIP == INTEL)
old_ldt_sel = rpc->p_ldt_sel; /* stop this being obliterated by copy */
#endif
*rpc = *rpp; /* copy 'proc' struct */
#if (CHIP == INTEL)
rpc->p_ldt_sel = old_ldt_sel;
#endif
rpc->p_nr = m_ptr->PR_PROC_NR; /* this was obliterated by copy */
rpc->p_ntf_q = NULL; /* remove pending notifications */
/* Only one in group should have SIGNALED, child doesn't inherit tracing. */
rpc->p_rts_flags |= NO_MAP; /* inhibit process from running */
rpc->p_rts_flags &= ~(SIGNALED | SIG_PENDING | P_STOP);
sigemptyset(&rpc->p_pending);
rpc->p_reg.retreg = 0; /* child sees pid = 0 to know it is child */
rpc->p_user_time = 0; /* set all the accounting times to 0 */
rpc->p_sys_time = 0;
return(OK);
}
#endif /* USE_FORK */

View file

@ -1,61 +1,3 @@
#include "../kernel.h"
#include "../system.h"
#include <unistd.h>
#include <minix/config.h>
/*===========================================================================*
* do_unused *
*===========================================================================*/
PUBLIC int do_unused(m)
message *m; /* pointer to request message */
{
kprintf("SYS task got illegal request from %d.", m->m_source);
return(EBADREQUEST); /* illegal message type */
}
/* The system call implemented in this file:
* m_type: SYS_ABORT
*
* The parameters for this system call are:
* m1_i1: ABRT_HOW (how to abort, possibly fetch monitor params)
* m1_i2: ABRT_MON_PROC (proc nr to get monitor params from)
* m1_i3: ABRT_MON_LEN (length of monitor params)
* m1_p1: ABRT_MON_ADDR (virtual address of params)
*/
/*===========================================================================*
* do_abort *
*===========================================================================*/
PUBLIC int do_abort(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_abort. MINIX is unable to continue. This can originate in the
* PM (normal abort or panic) or FS (panic), or TTY (a CTRL-ALT-DEL or ESC
* after debugging dumps).
*/
int how = m_ptr->ABRT_HOW;
if (how == RBT_MONITOR) {
/* The monitor is to run the specified instructions. */
int proc_nr = m_ptr->ABRT_MON_PROC;
int length = m_ptr->ABRT_MON_LEN + 1;
vir_bytes src_vir = (vir_bytes) m_ptr->ABRT_MON_ADDR;
phys_bytes src_phys = numap_local(proc_nr, src_vir, length);
/* Validate length and address of shutdown code before copying. */
if (length > kinfo.params_size || src_phys == 0)
phys_copy(vir2phys("delay;boot"), kinfo.params_base, 11);
else
phys_copy(src_phys, kinfo.params_base, (phys_bytes) length);
}
prepare_shutdown(how);
return(OK); /* pro-forma (really EDISASTER) */
}
/* The system call implemented in this file:
* m_type: SYS_GETINFO
*
@ -71,6 +13,10 @@ message *m_ptr; /* pointer to request message */
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
#include "../system.h"
#if USE_GETINFO
/*===========================================================================*
* do_getinfo *
*===========================================================================*/
@ -96,7 +42,7 @@ register message *m_ptr; /* pointer to request message */
break;
}
case GET_IMAGE: {
length = sizeof(struct system_image) * IMAGE_SIZE;
length = sizeof(struct system_image) * NR_BOOT_PROCS;
src_phys = vir2phys(image);
break;
}
@ -123,6 +69,11 @@ register message *m_ptr; /* pointer to request message */
src_phys = vir2phys(proc);
break;
}
case GET_PRIVTAB: {
length = sizeof(struct priv) * (NR_SYS_PROCS);
src_phys = vir2phys(priv);
break;
}
case GET_PROC: {
nr = (m_ptr->I_KEY_LEN == SELF) ? m_ptr->m_source : m_ptr->I_KEY_LEN;
if (! isokprocn(nr)) return(EINVAL); /* validate request */
@ -147,7 +98,7 @@ register message *m_ptr; /* pointer to request message */
src_phys = vir2phys(&kmess);
break;
}
#if ENABLE_LOCK_TIMING
#if DEBUG_TIME_LOCKS
case GET_LOCKTIMING: {
length = sizeof(timingdata);
src_phys = vir2phys(timingdata);
@ -167,4 +118,5 @@ register message *m_ptr; /* pointer to request message */
return(OK);
}
#endif /* USE_GETINFO */

View file

@ -0,0 +1,55 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
#if USE_GETKSIG
/*===========================================================================*
* do_getksig *
*===========================================================================*/
PUBLIC int do_getksig(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* PM is ready to accept signals and repeatedly does a system call to get
* one. Find a process with pending signals. If no signals are available,
* return NONE in the process number field.
*/
register struct proc *rp;
/* Find the next process with pending signals. */
for (rp = BEG_USER_ADDR; rp < END_PROC_ADDR; rp++) {
if (rp->p_rts_flags & SIGNALED) {
m_ptr->SIG_PROC = rp->p_nr;
m_ptr->SIG_MAP = rp->p_pending;
sigemptyset(&rp->p_pending); /* ball is in PM's court */
rp->p_rts_flags &= ~SIGNALED; /* blocked by SIG_PENDING */
return(OK);
}
}
/* No process with pending signals was found. */
m_ptr->SIG_PROC = NONE;
return(OK);
}
#endif /* USE_GETKSIG */

View file

@ -11,9 +11,10 @@
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
#include "../kernel.h"
#include "../system.h"
#if USE_IRQCTL
/*===========================================================================*
* do_irqctl *
*===========================================================================*/
@ -95,3 +96,5 @@ register message *m_ptr; /* pointer to request message */
return(r);
}
#endif /* USE_IRQCTL */

41
kernel/system/do_kill.c Normal file
View file

@ -0,0 +1,41 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
#if USE_KILL
/*===========================================================================*
* do_kill *
*===========================================================================*/
PUBLIC int do_kill(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_kill(). Cause a signal to be sent to a process via PM.
* Note that this has nothing to do with the kill (2) system call, this
* is how the FS (and possibly other servers) get access to cause_sig.
*/
cause_sig(m_ptr->SIG_PROC, m_ptr->SIG_NUMBER);
return(OK);
}
#endif /* USE_KILL */

27
kernel/system/do_memset.c Normal file
View file

@ -0,0 +1,27 @@
/* The system call implemented in this file:
* m_type: SYS_MEMSET
*
* The parameters for this system call are:
* m5_l1: CP_SRC_ADDR (virtual address)
* m5_l2: CP_DST_ADDR (returns physical address)
* m5_l3: CP_NR_BYTES (size of datastructure)
*/
#include "../system.h"
#if USE_MEMSET
/*===========================================================================*
* do_memset *
*===========================================================================*/
PUBLIC int do_memset(m_ptr)
register message *m_ptr;
{
/* Handle sys_memset(). */
phys_zero((phys_bytes) m_ptr->MEM_PTR, (phys_bytes) m_ptr->MEM_COUNT);
return(OK);
}
#endif /* USE_MEMSET */

53
kernel/system/do_newmap.c Normal file
View file

@ -0,0 +1,53 @@
/* The system call implemented in this file:
* m_type: SYS_NEWMAP
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (install new map for this process)
* m1_p1: PR_MEM_PTR (pointer to memory map)
*/
#include "../system.h"
#if USE_NEWMAP
/*===========================================================================*
* do_newmap *
*===========================================================================*/
PUBLIC int do_newmap(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_newmap(). Fetch the memory map from PM. */
register struct proc *rp;
phys_bytes src_phys;
int caller; /* whose space has the new map (usually PM) */
int k; /* process whose map is to be loaded */
int old_flags; /* value of flags before modification */
struct mem_map *map_ptr; /* virtual address of map inside caller (PM) */
/* Extract message parameters and copy new memory map from PM. */
caller = m_ptr->m_source;
k = m_ptr->PR_PROC_NR;
map_ptr = (struct mem_map *) m_ptr->PR_MEM_PTR;
if (!isokprocn(k)) return(EINVAL);
rp = proc_addr(k); /* ptr to entry of user getting new map */
/* Copy the map from PM. */
src_phys = umap_local(proc_addr(caller), D, (vir_bytes) map_ptr,
sizeof(rp->p_memmap));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys,vir2phys(rp->p_memmap),(phys_bytes)sizeof(rp->p_memmap));
#if (CHIP != M68000)
alloc_segments(rp);
#else
pmmu_init_proc(rp);
#endif
old_flags = rp->p_rts_flags; /* save the previous value of the flags */
rp->p_rts_flags &= ~NO_MAP;
if (old_flags != 0 && rp->p_rts_flags == 0) lock_ready(rp);
return(OK);
}
#endif /* USE_NEWMAP */

View file

@ -0,0 +1,50 @@
/* The system call implemented in this file:
* m_type: SYS_SCHEDCTL
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR process number to change priority
* m1_i2: PR_PRIORITY the new priority
*/
#include "../system.h"
#include <minix/type.h>
#include <sys/resource.h>
#if USE_SCHEDCTL
/*===========================================================================*
* do_schedctl *
*===========================================================================*/
PUBLIC int do_schedctl(message *m_ptr)
{
int proc_nr, pri, new_q ;
register struct proc *rp;
/* Extract the message parameters and do sanity checking. */
proc_nr = m_ptr->PR_PROC_NR;
if (! isokprocn(proc_nr)) return(EINVAL);
pri = m_ptr->PR_PRIORITY;
if (pri < PRIO_MIN || pri > PRIO_MAX) return(EINVAL);
/* The priority is currently between PRIO_MIN and PRIO_MAX. We have to
* scale this between MIN_USER_Q and MAX_USER_Q.
*/
new_q = MAX_USER_Q + (pri-PRIO_MIN) * (MIN_USER_Q-MAX_USER_Q+1) /
(PRIO_MAX-PRIO_MIN+1);
if (new_q < MAX_USER_Q) new_q = MAX_USER_Q; /* shouldn't happen */
if (new_q > MIN_USER_Q) new_q = MIN_USER_Q; /* shouldn't happen */
/* Make sure the process is not running while changing its priority; the
* max_priority is the base priority. Put the process back in its new
* queue if it is runnable.
*/
rp = proc_addr(proc_nr);
lock_unready(rp);
rp->p_max_priority = rp->p_priority = new_q;
if (! rp->p_rts_flags) lock_ready(rp);
return(OK);
}
#endif /* USE_SCHEDCTL */

61
kernel/system/do_sdevio.c Normal file
View file

@ -0,0 +1,61 @@
/* The system call implemented in this file:
* m_type: SYS_SDEVIO
*
* The parameters for this system call are:
* m2_i3: DIO_REQUEST (request input or output)
* m2_i1: DIO_TYPE (flag indicating byte, word, or long)
* m2_l1: DIO_PORT (port to read/ write)
* m2_p1: DIO_VEC_ADDR (virtual address of buffer)
* m2_l2: DIO_VEC_SIZE (number of elements)
* m2_i2: DIO_VEC_PROC (process where buffer is)
*/
#include "../system.h"
#include <minix/devio.h>
#if USE_SDEVIO
/*===========================================================================*
* do_sdevio *
*===========================================================================*/
PUBLIC int do_sdevio(m_ptr)
register message *m_ptr; /* pointer to request message */
{
int proc_nr = m_ptr->DIO_VEC_PROC;
int count = m_ptr->DIO_VEC_SIZE;
long port = m_ptr->DIO_PORT;
phys_bytes phys_buf;
/* Check if process number is OK. */
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr))
return(EINVAL);
/* Get and check physical address. */
if ((phys_buf = numap_local(proc_nr, (vir_bytes) m_ptr->DIO_VEC_ADDR, count)) == 0)
return(EFAULT);
/* Perform device I/O for bytes and words. Longs are not supported. */
if (m_ptr->DIO_REQUEST == DIO_INPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: phys_insb(port, phys_buf, count); break;
case DIO_WORD: phys_insw(port, phys_buf, count); break;
default: return(EINVAL);
}
} else if (m_ptr->DIO_REQUEST == DIO_OUTPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: phys_outsb(port, phys_buf, count); break;
case DIO_WORD: phys_outsw(port, phys_buf, count); break;
default: return(EINVAL);
}
}
else {
return(EINVAL);
}
return(OK);
}
#endif /* USE_SDEVIO */

84
kernel/system/do_segctl.c Normal file
View file

@ -0,0 +1,84 @@
/* The system call implemented in this file:
* m_type: SYS_SEGCTL
*
* The parameters for this system call are:
* m4_l3: SEG_PHYS (physical base address)
* m4_l4: SEG_SIZE (size of segment)
* m4_l1: SEG_SELECT (return segment selector here)
* m4_l2: SEG_OFFSET (return offset within segment here)
* m4_l5: SEG_INDEX (return index into remote memory map here)
*
* Author:
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
#include "../system.h"
#include "../protect.h"
#if USE_SEGCTL
/*===========================================================================*
* do_segctl *
*===========================================================================*/
PUBLIC int do_segctl(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Return a segment selector and offset that can be used to reach a physical
* address, for use by a driver doing memory I/O in the A0000 - DFFFF range.
*/
u16_t selector;
vir_bytes offset;
int i, index;
register struct proc *rp;
phys_bytes phys = (phys_bytes) m_ptr->SEG_PHYS;
vir_bytes size = (vir_bytes) m_ptr->SEG_SIZE;
int result;
/* First check if there is a slot available for this segment. */
rp = proc_addr(m_ptr->m_source);
index = -1;
for (i=0; i < NR_REMOTE_SEGS; i++) {
if (! rp->p_priv->s_farmem[i].in_use) {
index = i;
rp->p_priv->s_farmem[i].in_use = TRUE;
rp->p_priv->s_farmem[i].mem_phys = phys;
rp->p_priv->s_farmem[i].mem_len = size;
break;
}
}
if (index < 0) return(ENOSPC);
if (! machine.protected) {
selector = phys / HCLICK_SIZE;
offset = phys % HCLICK_SIZE;
result = OK;
} else {
/* Check if the segment size can be recorded in bytes, that is, check
* if descriptor's limit field can delimited the allowed memory region
* precisely. This works up to 1MB. If the size is larger, 4K pages
* instead of bytes are used.
*/
if (size < BYTE_GRAN_MAX) {
init_dataseg(&rp->p_ldt[EXTRA_LDT_INDEX+i], phys, size,
USER_PRIVILEGE);
selector = ((EXTRA_LDT_INDEX+i)*0x08) | (1*0x04) | USER_PRIVILEGE;
offset = 0;
result = OK;
} else {
init_dataseg(&rp->p_ldt[EXTRA_LDT_INDEX+i], phys & ~0xFFFF, 0,
USER_PRIVILEGE);
selector = ((EXTRA_LDT_INDEX+i)*0x08) | (1*0x04) | USER_PRIVILEGE;
offset = phys & 0xFFFF;
result = OK;
}
}
/* Request successfully done. Now return the result. */
m_ptr->SEG_INDEX = index | REMOTE_SEG;
m_ptr->SEG_SELECT = selector;
m_ptr->SEG_OFFSET = offset;
return(result);
}
#endif /* USE_SEGCTL */

View file

@ -0,0 +1,79 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
#if USE_SIGRETURN
/*===========================================================================*
* do_sigreturn *
*===========================================================================*/
PUBLIC int do_sigreturn(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* POSIX style signals require sys_sigreturn to put things in order before
* the signalled process can resume execution
*/
struct sigcontext sc;
register struct proc *rp;
phys_bytes src_phys;
rp = proc_addr(m_ptr->SIG_PROC);
/* Copy in the sigcontext structure. */
src_phys = umap_local(rp, D, (vir_bytes) m_ptr->SIG_CTXT_PTR,
(vir_bytes) sizeof(struct sigcontext));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys, vir2phys(&sc), (phys_bytes) sizeof(struct sigcontext));
/* Make sure that this is not just a jump buffer. */
if ((sc.sc_flags & SC_SIGCONTEXT) == 0) return(EINVAL);
/* Fix up only certain key registers if the compiler doesn't use
* register variables within functions containing setjmp.
*/
if (sc.sc_flags & SC_NOREGLOCALS) {
rp->p_reg.retreg = sc.sc_retreg;
rp->p_reg.fp = sc.sc_fp;
rp->p_reg.pc = sc.sc_pc;
rp->p_reg.sp = sc.sc_sp;
return(OK);
}
sc.sc_psw = rp->p_reg.psw;
#if (CHIP == INTEL)
/* Don't panic kernel if user gave bad selectors. */
sc.sc_cs = rp->p_reg.cs;
sc.sc_ds = rp->p_reg.ds;
sc.sc_es = rp->p_reg.es;
#if _WORD_SIZE == 4
sc.sc_fs = rp->p_reg.fs;
sc.sc_gs = rp->p_reg.gs;
#endif
#endif
/* Restore the registers. */
kmemcpy(&rp->p_reg, (char *)&sc.sc_regs, sizeof(struct sigregs));
return(OK);
}
#endif /* USE_SIGRETURN */

View file

@ -0,0 +1,89 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
#if USE_SIGSEND
/*===========================================================================*
* do_sigsend *
*===========================================================================*/
PUBLIC int do_sigsend(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_sigsend, POSIX-style signal handling. */
struct sigmsg smsg;
register struct proc *rp;
phys_bytes src_phys, dst_phys;
struct sigcontext sc, *scp;
struct sigframe fr, *frp;
rp = proc_addr(m_ptr->SIG_PROC);
/* Get the sigmsg structure into our address space. */
src_phys = umap_local(proc_addr(PM_PROC_NR), D, (vir_bytes)
m_ptr->SIG_CTXT_PTR, (vir_bytes) sizeof(struct sigmsg));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys,vir2phys(&smsg),(phys_bytes) sizeof(struct sigmsg));
/* Compute the user stack pointer where sigcontext will be stored. */
scp = (struct sigcontext *) smsg.sm_stkptr - 1;
/* Copy the registers to the sigcontext structure. */
kmemcpy(&sc.sc_regs, &rp->p_reg, sizeof(struct sigregs));
/* Finish the sigcontext initialization. */
sc.sc_flags = SC_SIGCONTEXT;
sc.sc_mask = smsg.sm_mask;
/* Copy the sigcontext structure to the user's stack. */
dst_phys = umap_local(rp, D, (vir_bytes) scp,
(vir_bytes) sizeof(struct sigcontext));
if (dst_phys == 0) return(EFAULT);
phys_copy(vir2phys(&sc), dst_phys, (phys_bytes) sizeof(struct sigcontext));
/* Initialize the sigframe structure. */
frp = (struct sigframe *) scp - 1;
fr.sf_scpcopy = scp;
fr.sf_retadr2= (void (*)()) rp->p_reg.pc;
fr.sf_fp = rp->p_reg.fp;
rp->p_reg.fp = (reg_t) &frp->sf_fp;
fr.sf_scp = scp;
fr.sf_code = 0; /* XXX - should be used for type of FP exception */
fr.sf_signo = smsg.sm_signo;
fr.sf_retadr = (void (*)()) smsg.sm_sigreturn;
/* Copy the sigframe structure to the user's stack. */
dst_phys = umap_local(rp, D, (vir_bytes) frp,
(vir_bytes) sizeof(struct sigframe));
if (dst_phys == 0) return(EFAULT);
phys_copy(vir2phys(&fr), dst_phys, (phys_bytes) sizeof(struct sigframe));
/* Reset user registers to execute the signal handler. */
rp->p_reg.sp = (reg_t) frp;
rp->p_reg.pc = (reg_t) smsg.sm_sighandler;
return(OK);
}
#endif /* USE_SIGSEND */

72
kernel/system/do_svrctl.c Normal file
View file

@ -0,0 +1,72 @@
/* The system call implemented in this file:
* m_type: SYS_SVRCTL
*
* The parameters for this system call are:
* m2_i1: CTL_PROC_NR (process number of caller)
* m2_i2: CTL_REQUEST (request type)
* m2_i3: CTL_MM_PRIV (privilege)
* m2_l1: CTL_SEND_MASK (new send mask to be installed)
* m2_l2: CTL_PROC_TYPE (new process type)
* m2_p1: CTL_ARG_PTR (argument pointer)
*/
#include "../system.h"
#include "../ipc.h"
#include <sys/svrctl.h>
#if USE_SVRCTL
/* NOTE: this call will radically change! */
/*===========================================================================*
* do_svrctl *
*===========================================================================*/
PUBLIC int do_svrctl(m_ptr)
message *m_ptr; /* pointer to request message */
{
register struct proc *rp;
register struct priv *sp;
int proc_nr, rights;
int request;
vir_bytes argp;
/* Extract message parameters. */
proc_nr = m_ptr->CTL_PROC_NR;
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
request = m_ptr->CTL_REQUEST;
rights = m_ptr->CTL_MM_PRIV;
argp = (vir_bytes) m_ptr->CTL_ARG_PTR;
rp = proc_addr(proc_nr);
/* Check if the PM privileges are super user. */
if (!rights || !isuserp(rp))
return(EPERM);
/* See what is requested and handle the request. */
switch (request) {
case SYSSIGNON: {
/* Make this process a server. The system processes should be able
* to communicate with this new server, so update their send masks
* as well.
*/
/* Find a new system privileges structure for this process. */
for (sp=BEG_PRIV_ADDR; sp< END_PRIV_ADDR; sp++)
if (sp->s_proc_nr == NONE) break;
if (sp->s_proc_nr != NONE) return(ENOSPC);
/* Now update the process' privileges as requested. */
rp->p_priv = sp; /* assign to process */
rp->p_priv->s_proc_nr = proc_nr(rp); /* set association */
rp->p_priv->s_call_mask = SYSTEM_CALL_MASK;
return(OK);
}
default:
return(EINVAL);
}
}
#endif /* USE_SVRCTL */

40
kernel/system/do_times.c Normal file
View file

@ -0,0 +1,40 @@
/* The system call implemented in this file:
* m_type: SYS_TIMES
*
* The parameters for this system call are:
* m4_l1: T_PROC_NR (get info for this process)
* m4_l1: T_USER_TIME (return values ...)
* m4_l2: T_SYSTEM_TIME
* m4_l5: T_BOOT_TICKS
*/
#include "../system.h"
#if USE_TIMES
/*===========================================================================*
* do_times *
*===========================================================================*/
PUBLIC int do_times(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_times(). Retrieve the accounting information. */
register struct proc *rp;
int proc_nr;
/* Insert the times needed by the SYS_TIMES system call in the message.
* The clock's interrupt handler may run to update the user or system time
* while in this code, but that cannot do any harm.
*/
proc_nr = (m_ptr->T_PROC_NR == SELF) ? m_ptr->m_source : m_ptr->T_PROC_NR;
if (isokprocn(proc_nr)) {
rp = proc_addr(m_ptr->T_PROC_NR);
m_ptr->T_USER_TIME = rp->p_user_time;
m_ptr->T_SYSTEM_TIME = rp->p_sys_time;
}
m_ptr->T_BOOT_TICKS = get_uptime();
return(OK);
}
#endif /* USE_TIMES */

View file

@ -8,10 +8,10 @@
* m2_l2: CTL_DATA data to be written or returned here
*/
#include "../kernel.h"
#include "../system.h"
#include <sys/ptrace.h>
#if USE_TRACE
/*==========================================================================*
* do_trace *
@ -138,3 +138,4 @@ register message *m_ptr;
return(OK);
}
#endif /* USE_TRACE */

52
kernel/system/do_umap.c Normal file
View file

@ -0,0 +1,52 @@
/* The system call implemented in this file:
* m_type: SYS_UMAP
*
* The parameters for this system call are:
* m5_i1: CP_SRC_PROC_NR (process number)
* m5_c1: CP_SRC_SPACE (segment where address is: T, D, or S)
* m5_l1: CP_SRC_ADDR (virtual address)
* m5_l2: CP_DST_ADDR (returns physical address)
* m5_l3: CP_NR_BYTES (size of datastructure)
*/
#include "../system.h"
#if USE_UMAP
/*==========================================================================*
* do_umap *
*==========================================================================*/
PUBLIC int do_umap(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Map virtual address to physical, for non-kernel processes. */
int seg_type = m_ptr->CP_SRC_SPACE & SEGMENT_TYPE;
int seg_index = m_ptr->CP_SRC_SPACE & SEGMENT_INDEX;
vir_bytes offset = m_ptr->CP_SRC_ADDR;
int count = m_ptr->CP_NR_BYTES;
int proc_nr = (int) m_ptr->CP_SRC_PROC_NR;
phys_bytes phys_addr;
/* Verify process number. */
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
/* See which mapping should be made. */
switch(seg_type) {
case LOCAL_SEG:
phys_addr = umap_local(proc_addr(proc_nr), seg_index, offset, count);
break;
case REMOTE_SEG:
phys_addr = umap_remote(proc_addr(proc_nr), seg_index, offset, count);
break;
case BIOS_SEG:
phys_addr = umap_bios(proc_addr(proc_nr), offset, count);
break;
default:
return(EINVAL);
}
m_ptr->CP_DST_ADDR = phys_addr;
return (phys_addr == 0) ? EFAULT: OK;
}
#endif /* USE_UMAP */

15
kernel/system/do_unused.c Normal file
View file

@ -0,0 +1,15 @@
#include "../system.h"
/*===========================================================================*
* do_unused *
*===========================================================================*/
PUBLIC int do_unused(m)
message *m; /* pointer to request message */
{
kprintf("SYSTEM got unused request %d", m->m_type);
kprintf("from %d.\n", m->m_source);
return(EBADREQUEST); /* illegal message type */
}

67
kernel/system/do_vcopy.c Normal file
View file

@ -0,0 +1,67 @@
/* The system call implemented in this file:
* m_type: SYS_VIRVCOPY, SYS_PHYSVCOPY
*
* The parameters for this system call are:
* m5_c1: CP_SRC_SPACE
* m5_l1: CP_SRC_ADDR
* m5_i1: CP_SRC_PROC_NR
* m5_c2: CP_DST_SPACE
* m5_l2: CP_DST_ADDR
* m5_i2: CP_DST_PROC_NR
* m5_l3: CP_NR_BYTES
*/
#include "../system.h"
#include <minix/type.h>
#if (USE_VIRVCOPY || USE_PHYSVCOPY)
/* Buffer to hold copy request vector from user. */
PRIVATE struct vir_cp_req vir_cp_req[VCOPY_VEC_SIZE];
/*===========================================================================*
* do_vcopy *
*===========================================================================*/
PUBLIC int do_vcopy(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_virvcopy(). Handle virtual copy requests from vector. */
int nr_req;
int caller_pid;
vir_bytes caller_vir;
phys_bytes caller_phys;
phys_bytes kernel_phys;
phys_bytes bytes;
int i,s;
struct vir_cp_req *req;
/* Check if request vector size is ok. */
nr_req = (unsigned) m_ptr->VCP_VEC_SIZE;
if (nr_req > VCOPY_VEC_SIZE) return(EINVAL);
bytes = nr_req * sizeof(struct vir_cp_req);
/* Calculate physical addresses and copy (port,value)-pairs from user. */
caller_pid = (int) m_ptr->m_source;
caller_vir = (vir_bytes) m_ptr->VCP_VEC_ADDR;
caller_phys = umap_local(proc_addr(caller_pid), D, caller_vir, bytes);
if (0 == caller_phys) return(EFAULT);
kernel_phys = vir2phys(vir_cp_req);
phys_copy(caller_phys, kernel_phys, (phys_bytes) bytes);
/* Assume vector with requests is correct. Try to copy everything. */
for (i=0; i<nr_req; i++) {
req = &vir_cp_req[i];
/* Check if physical addressing is used without SYS_PHYSVCOPY. */
if (((req->src.segment | req->dst.segment) & PHYS_SEG) &&
m_ptr->m_type != SYS_PHYSVCOPY)
return(EPERM);
if ((s=virtual_copy(&req->src, &req->dst, req->count)) != OK)
return(s);
}
return(OK);
}
#endif /* (USE_VIRVCOPY || USE_PHYSVCOPY) */

View file

@ -1,100 +1,3 @@
/* The system call implemented in this file:
* m_type: SYS_DEVIO
*
* The parameters for this system call are:
* m2_i3: DIO_REQUEST (request input or output)
* m2_i1: DIO_TYPE (flag indicating byte, word, or long)
* m2_l1: DIO_PORT (port to read/ write)
* m2_l2: DIO_VALUE (value to write/ return value read)
*
* Author:
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
#include "../kernel.h"
#include "../system.h"
#include "../debug.h"
#include <minix/devio.h>
/*===========================================================================*
* do_devio *
*===========================================================================*/
PUBLIC int do_devio(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* perform actual device I/O for byte, word, and long values */
if (m_ptr->DIO_REQUEST == DIO_INPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: m_ptr->DIO_VALUE = inb(m_ptr->DIO_PORT); break;
case DIO_WORD: m_ptr->DIO_VALUE = inw(m_ptr->DIO_PORT); break;
case DIO_LONG: m_ptr->DIO_VALUE = inl(m_ptr->DIO_PORT); break;
default: return(EINVAL);
}
} else {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: outb(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
case DIO_WORD: outw(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
case DIO_LONG: outl(m_ptr->DIO_PORT, m_ptr->DIO_VALUE); break;
default: return(EINVAL);
}
}
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_SDEVIO
*
* The parameters for this system call are:
* m2_i3: DIO_REQUEST (request input or output)
* m2_i1: DIO_TYPE (flag indicating byte, word, or long)
* m2_l1: DIO_PORT (port to read/ write)
* m2_p1: DIO_VEC_ADDR (virtual address of buffer)
* m2_l2: DIO_VEC_SIZE (number of elements)
* m2_i2: DIO_VEC_PROC (process where buffer is)
*/
/*===========================================================================*
* do_sdevio *
*===========================================================================*/
PUBLIC int do_sdevio(m_ptr)
register message *m_ptr; /* pointer to request message */
{
int proc_nr = m_ptr->DIO_VEC_PROC;
int count = m_ptr->DIO_VEC_SIZE;
long port = m_ptr->DIO_PORT;
phys_bytes phys_buf;
/* Check if process number is OK. */
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr))
return(EINVAL);
/* Get and check physical address. */
if ((phys_buf = numap_local(proc_nr, (vir_bytes) m_ptr->DIO_VEC_ADDR, count)) == 0)
return(EFAULT);
/* Perform device I/O for bytes and words. Longs are not supported. */
if (m_ptr->DIO_REQUEST == DIO_INPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: phys_insb(port, phys_buf, count); break;
case DIO_WORD: phys_insw(port, phys_buf, count); break;
default: return(EINVAL);
}
} else if (m_ptr->DIO_REQUEST == DIO_OUTPUT) {
switch (m_ptr->DIO_TYPE) {
case DIO_BYTE: phys_outsb(port, phys_buf, count); break;
case DIO_WORD: phys_outsw(port, phys_buf, count); break;
default: return(EINVAL);
}
}
else {
return(EINVAL);
}
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_VDEVIO
*
@ -105,6 +8,12 @@ register message *m_ptr; /* pointer to request message */
* m2_i2: DIO_VEC_SIZE (number of ports to read or write)
*/
#include "../system.h"
#include <minix/devio.h>
#if USE_VDEVIO
/* Buffer for SYS_VDEVIO to copy (port,value)-pairs from/ to user. */
PRIVATE char vdevio_pv_buf[VDEVIO_BUF_SIZE];
@ -213,4 +122,5 @@ register message *m_ptr; /* pointer to request message */
return(OK);
}
#endif /* USE_VDEVIO */

View file

@ -1,56 +0,0 @@
/* The system call implemented in this file:
* m_type: SYS_SETPRIORITY
*
* The parameters for this system call are:
* m1_i1: which
* m1_i2: who
* m1_i3: prio
*/
#include "../kernel.h"
#include "../system.h"
#include <minix/type.h>
#include <sys/resource.h>
/*===========================================================================*
* do_setpriority *
*===========================================================================*/
PUBLIC int do_setpriority(message *m_ptr)
{
int which_proc, pri, q, niceperq;
struct proc *which_procp;
which_proc = m_ptr->m1_i1;
pri = m_ptr->m1_i2;
/* pri is currently between PRIO_MIN and PRIO_MAX. We have to
* scale this between MIN_USER_Q and MAX_USER_Q.
*/
if(pri < PRIO_MIN || pri > PRIO_MAX)
return EINVAL;
if(which_proc < 0 || which_proc >= NR_TASKS+NR_PROCS)
return EINVAL;
which_procp = proc_addr(which_proc);
q = MAX_USER_Q + (pri - PRIO_MIN) * (MIN_USER_Q-MAX_USER_Q+1) / (PRIO_MAX-PRIO_MIN+1);
/* The below shouldn't happen. */
if(q < MAX_USER_Q) q = MAX_USER_Q;
if(q > MIN_USER_Q) q = MIN_USER_Q;
/* max_priority is the base priority. */
which_procp->p_max_priority = q;
lock_unready(which_procp);
which_procp->p_priority = q;
/* Runnable? Put it (back) on its new run queue. */
if(!which_procp->p_rts_flags)
lock_ready(which_procp);
return OK;
}

View file

@ -1,209 +0,0 @@
/* The system call implemented in this file:
* m_type: SYS_FORK
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (child's process table slot)
* m1_i2: PR_PPROC_NR (parent, process that forked)
* m1_i3: PR_PID (child pid received from PM)
*/
#include "../kernel.h"
#include "../system.h"
#include "../sendmask.h"
#include <signal.h>
#if (CHIP == INTEL)
#include "../protect.h"
#endif
#include "../debug.h"
/*===========================================================================*
* do_fork *
*===========================================================================*/
PUBLIC int do_fork(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_fork(). PR_PPROC_NR has forked. The child is PR_PROC_NR. */
#if (CHIP == INTEL)
reg_t old_ldt_sel;
#endif
register struct proc *rpc;
struct proc *rpp;
rpp = proc_addr(m_ptr->PR_PPROC_NR);
rpc = proc_addr(m_ptr->PR_PROC_NR);
if (! isemptyp(rpc)) return(EINVAL);
/* Copy parent 'proc' struct to child. */
#if (CHIP == INTEL)
old_ldt_sel = rpc->p_ldt_sel; /* stop this being obliterated by copy */
#endif
*rpc = *rpp; /* copy 'proc' struct */
#if (CHIP == INTEL)
rpc->p_ldt_sel = old_ldt_sel;
#endif
rpc->p_nr = m_ptr->PR_PROC_NR; /* this was obliterated by copy */
rpc->p_ntf_q = NULL; /* remove pending notifications */
/* Only one in group should have SIGNALED, child doesn't inherit tracing. */
rpc->p_rts_flags |= NO_MAP; /* inhibit process from running */
rpc->p_rts_flags &= ~(SIGNALED | SIG_PENDING | P_STOP);
sigemptyset(&rpc->p_pending);
rpc->p_reg.retreg = 0; /* child sees pid = 0 to know it is child */
rpc->p_user_time = 0; /* set all the accounting times to 0 */
rpc->p_sys_time = 0;
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_NEWMAP
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (install new map for this process)
* m1_p1: PR_MEM_PTR (pointer to memory map)
*/
/*===========================================================================*
* do_newmap *
*===========================================================================*/
PUBLIC int do_newmap(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_newmap(). Fetch the memory map from PM. */
register struct proc *rp;
phys_bytes src_phys;
int caller; /* whose space has the new map (usually PM) */
int k; /* process whose map is to be loaded */
int old_flags; /* value of flags before modification */
struct mem_map *map_ptr; /* virtual address of map inside caller (PM) */
/* Extract message parameters and copy new memory map from PM. */
caller = m_ptr->m_source;
k = m_ptr->PR_PROC_NR;
map_ptr = (struct mem_map *) m_ptr->PR_MEM_PTR;
if (!isokprocn(k)) return(EINVAL);
rp = proc_addr(k); /* ptr to entry of user getting new map */
/* Copy the map from PM. */
src_phys = umap_local(proc_addr(caller), D, (vir_bytes) map_ptr,
sizeof(rp->p_memmap));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys,vir2phys(rp->p_memmap),(phys_bytes)sizeof(rp->p_memmap));
#if (CHIP != M68000)
alloc_segments(rp);
#else
pmmu_init_proc(rp);
#endif
old_flags = rp->p_rts_flags; /* save the previous value of the flags */
rp->p_rts_flags &= ~NO_MAP;
if (old_flags != 0 && rp->p_rts_flags == 0) lock_ready(rp);
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_EXEC
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (process that did exec call)
* m1_i3: PR_TRACING (flag to indicate tracing is on/ off)
* m1_p1: PR_STACK_PTR (new stack pointer)
* m1_p2: PR_NAME_PTR (pointer to program name)
* m1_p3: PR_IP_PTR (new instruction pointer)
*/
/*===========================================================================*
* do_exec *
*===========================================================================*/
PUBLIC int do_exec(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Handle sys_exec(). A process has done a successful EXEC. Patch it up. */
register struct proc *rp;
reg_t sp; /* new sp */
phys_bytes phys_name;
char *np;
rp = proc_addr(m_ptr->PR_PROC_NR);
if (m_ptr->PR_TRACING) cause_sig(m_ptr->PR_PROC_NR, SIGTRAP);
sp = (reg_t) m_ptr->PR_STACK_PTR;
rp->p_reg.sp = sp; /* set the stack pointer */
#if (CHIP == M68000)
rp->p_splow = sp; /* set the stack pointer low water */
#ifdef FPP
/* Initialize fpp for this process */
fpp_new_state(rp);
#endif
#endif
#if (CHIP == INTEL) /* wipe extra LDT entries */
kmemset(&rp->p_ldt[EXTRA_LDT_INDEX], 0,
(LDT_SIZE - EXTRA_LDT_INDEX) * sizeof(rp->p_ldt[0]));
#endif
rp->p_reg.pc = (reg_t) m_ptr->PR_IP_PTR; /* set pc */
rp->p_rts_flags &= ~RECEIVING; /* PM does not reply to EXEC call */
if (rp->p_rts_flags == 0) lock_ready(rp);
/* Save command name for debugging, ps(1) output, etc. */
phys_name = numap_local(m_ptr->m_source, (vir_bytes) m_ptr->PR_NAME_PTR,
(vir_bytes) P_NAME_LEN - 1);
if (phys_name != 0) {
phys_copy(phys_name, vir2phys(rp->p_name), (phys_bytes) P_NAME_LEN - 1);
for (np = rp->p_name; (*np & BYTE) >= ' '; np++) {}
*np = 0; /* mark end */
} else {
kstrncpy(rp->p_name, "<unset>", P_NAME_LEN);
}
return(OK);
}
/* The system call implemented in this file:
* m_type: SYS_XIT
*
* The parameters for this system call are:
* m1_i1: PR_PROC_NR (slot number of exiting process)
*/
/*===========================================================================*
* do_xit *
*===========================================================================*/
PUBLIC int do_xit(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_exit. A user process has exited or a system process requests
* to exit. Only the PM can request other process slots to be cleared.
* The routine to clean up a process table slot cancels outstanding timers,
* possibly removes the process from the message queues, and resets certain
* process table fields to the default values.
*/
int exit_proc_nr;
/* Determine what process exited. */
if (PM_PROC_NR == m_ptr->m_source) {
exit_proc_nr = m_ptr->PR_PROC_NR; /* get exiting process */
if (exit_proc_nr != SELF) { /* PM tries to exit self */
if (! isokprocn(exit_proc_nr)) return(EINVAL);
clear_proc(exit_proc_nr); /* exit a user process */
return(OK); /* report back to PM */
}
}
/* The PM or some other system process requested to be exited. */
clear_proc(m_ptr->m_source);
return(EDONTREPLY);
}

View file

@ -1,192 +0,0 @@
/* The system call that is implemented in this file:
* SYS_SIGCTL # signal handling functionality
*
* The parameters and types for this system call are:
* SIG_REQUEST # request to perform (long)
* SIG_PROC # process to signal/ pending (int)
* SIG_CTXT_PTR # pointer to sigcontext structure (pointer)
* SIG_FLAGS # flags for S_SIGRETURN call (int)
* SIG_MAP # bit map with pending signals (long)
* SIG_NUMBER # signal number to send to process (int)
*
* Supported request types are in the parameter SIG_REQUEST:
* S_GETSIG # get a pending kernel signal
* S_ENDSIG # signal has been processed
* S_SENDSIG # deliver a POSIX-style signal
* S_SIGRETURN # return from a POSIX-style signal
* S_KILL # send a signal to a process
*/
#include "../kernel.h"
#include "../system.h"
#include <signal.h>
#include <sys/sigcontext.h>
/* PM is ready to accept signals and repeatedly does a system call to get
* one. Find a process with pending signals. If no signals are available,
* return NONE in the process number field.
*/
PUBLIC int do_getsig(m_ptr)
message *m_ptr; /* pointer to request message */
{
register struct proc *rp;
/* Find the next process with pending signals. */
for (rp = BEG_USER_ADDR; rp < END_PROC_ADDR; rp++) {
if (rp->p_rts_flags & SIGNALED) {
m_ptr->SIG_PROC = rp->p_nr;
m_ptr->SIG_MAP = rp->p_pending;
sigemptyset(&rp->p_pending); /* ball is in PM's court */
rp->p_rts_flags &= ~SIGNALED; /* blocked by SIG_PENDING */
return(OK);
}
}
/* No process with pending signals was found. */
m_ptr->SIG_PROC = NONE;
return(OK);
}
PUBLIC int do_endsig(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Finish up after a kernel type signal, caused by a SYS_KILL message or a
* call to cause_sig by a task. This is called by the PM after processing a
* signal it got with SYS_GETSIG.
*/
register struct proc *rp;
rp = proc_addr(m_ptr->SIG_PROC);
if (isemptyp(rp)) return(EINVAL); /* process already dead? */
/* PM has finished one kernel signal. Perhaps process is ready now? */
if (! (rp->p_rts_flags & SIGNALED)) /* new signal arrived */
if ((rp->p_rts_flags &= ~SIG_PENDING)==0) /* remove pending flag */
lock_ready(rp); /* ready if no flags */
return(OK);
}
PUBLIC int do_sigsend(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_sigsend, POSIX-style signal handling. */
struct sigmsg smsg;
register struct proc *rp;
phys_bytes src_phys, dst_phys;
struct sigcontext sc, *scp;
struct sigframe fr, *frp;
rp = proc_addr(m_ptr->SIG_PROC);
/* Get the sigmsg structure into our address space. */
src_phys = umap_local(proc_addr(PM_PROC_NR), D, (vir_bytes)
m_ptr->SIG_CTXT_PTR, (vir_bytes) sizeof(struct sigmsg));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys,vir2phys(&smsg),(phys_bytes) sizeof(struct sigmsg));
/* Compute the user stack pointer where sigcontext will be stored. */
scp = (struct sigcontext *) smsg.sm_stkptr - 1;
/* Copy the registers to the sigcontext structure. */
kmemcpy(&sc.sc_regs, &rp->p_reg, sizeof(struct sigregs));
/* Finish the sigcontext initialization. */
sc.sc_flags = SC_SIGCONTEXT;
sc.sc_mask = smsg.sm_mask;
/* Copy the sigcontext structure to the user's stack. */
dst_phys = umap_local(rp, D, (vir_bytes) scp,
(vir_bytes) sizeof(struct sigcontext));
if (dst_phys == 0) return(EFAULT);
phys_copy(vir2phys(&sc), dst_phys, (phys_bytes) sizeof(struct sigcontext));
/* Initialize the sigframe structure. */
frp = (struct sigframe *) scp - 1;
fr.sf_scpcopy = scp;
fr.sf_retadr2= (void (*)()) rp->p_reg.pc;
fr.sf_fp = rp->p_reg.fp;
rp->p_reg.fp = (reg_t) &frp->sf_fp;
fr.sf_scp = scp;
fr.sf_code = 0; /* XXX - should be used for type of FP exception */
fr.sf_signo = smsg.sm_signo;
fr.sf_retadr = (void (*)()) smsg.sm_sigreturn;
/* Copy the sigframe structure to the user's stack. */
dst_phys = umap_local(rp, D, (vir_bytes) frp,
(vir_bytes) sizeof(struct sigframe));
if (dst_phys == 0) return(EFAULT);
phys_copy(vir2phys(&fr), dst_phys, (phys_bytes) sizeof(struct sigframe));
/* Reset user registers to execute the signal handler. */
rp->p_reg.sp = (reg_t) frp;
rp->p_reg.pc = (reg_t) smsg.sm_sighandler;
return(OK);
}
PUBLIC int do_sigreturn(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* POSIX style signals require sys_sigreturn to put things in order before
* the signalled process can resume execution
*/
struct sigcontext sc;
register struct proc *rp;
phys_bytes src_phys;
rp = proc_addr(m_ptr->SIG_PROC);
/* Copy in the sigcontext structure. */
src_phys = umap_local(rp, D, (vir_bytes) m_ptr->SIG_CTXT_PTR,
(vir_bytes) sizeof(struct sigcontext));
if (src_phys == 0) return(EFAULT);
phys_copy(src_phys, vir2phys(&sc), (phys_bytes) sizeof(struct sigcontext));
/* Make sure that this is not just a jmp_buf. */
if ((sc.sc_flags & SC_SIGCONTEXT) == 0) return(EINVAL);
/* Fix up only certain key registers if the compiler doesn't use
* register variables within functions containing setjmp.
*/
if (sc.sc_flags & SC_NOREGLOCALS) {
rp->p_reg.retreg = sc.sc_retreg;
rp->p_reg.fp = sc.sc_fp;
rp->p_reg.pc = sc.sc_pc;
rp->p_reg.sp = sc.sc_sp;
return(OK);
}
sc.sc_psw = rp->p_reg.psw;
#if (CHIP == INTEL)
/* Don't panic kernel if user gave bad selectors. */
sc.sc_cs = rp->p_reg.cs;
sc.sc_ds = rp->p_reg.ds;
sc.sc_es = rp->p_reg.es;
#if _WORD_SIZE == 4
sc.sc_fs = rp->p_reg.fs;
sc.sc_gs = rp->p_reg.gs;
#endif
#endif
/* Restore the registers. */
kmemcpy(&rp->p_reg, (char *)&sc.sc_regs, sizeof(struct sigregs));
return(OK);
}
/*===========================================================================*
* do_sigctl *
*===========================================================================*/
PUBLIC int do_kill(m_ptr)
message *m_ptr; /* pointer to request message */
{
/* Handle sys_kill(). Cause a signal to be sent to a process via PM.
* Note that this has nothing to do with the kill (2) system call, this
* is how the FS (and possibly other servers) get access to cause_sig.
*/
cause_sig(m_ptr->SIG_PROC, m_ptr->SIG_NUMBER);
return(OK);
}

View file

@ -1,178 +0,0 @@
#include "../kernel.h"
#include "../ipc.h"
#include "../system.h"
#include "../protect.h"
#include <sys/svrctl.h>
#include "../sendmask.h"
/* The system call implemented in this file:
* m_type: SYS_SVRCTL
*
* The parameters for this system call are:
* m2_i1: CTL_PROC_NR (process number of caller)
* m2_i2: CTL_REQUEST (request type)
* m2_i3: CTL_MM_PRIV (privilege)
* m2_l1: CTL_SEND_MASK (new send mask to be installed)
* m2_l2: CTL_PROC_TYPE (new process type)
* m2_p1: CTL_ARG_PTR (argument pointer)
*/
/* NOTE: this call will radically change! */
/*===========================================================================*
* do_svrctl *
*===========================================================================*/
PUBLIC int do_svrctl(m_ptr)
message *m_ptr; /* pointer to request message */
{
register struct proc *rp;
int proc_nr, priv;
int request;
vir_bytes argp;
/* Extract message parameters. */
proc_nr = m_ptr->CTL_PROC_NR;
if (proc_nr == SELF) proc_nr = m_ptr->m_source;
if (! isokprocn(proc_nr)) return(EINVAL);
request = m_ptr->CTL_REQUEST;
priv = m_ptr->CTL_MM_PRIV;
argp = (vir_bytes) m_ptr->CTL_ARG_PTR;
rp = proc_addr(proc_nr);
/* Check if the PM privileges are super user. */
if (!priv || !isuserp(rp))
return(EPERM);
/* See what is requested and handle the request. */
switch (request) {
case SYSSIGNON: {
/* Make this process a server. The system processes should be able
* to communicate with this new server, so update their send masks
* as well.
*/
/* fall through */
}
case SYSSENDMASK: {
rp->p_call_mask = SYSTEM_CALL_MASK;
rp->p_sendmask = ALLOW_ALL_MASK;
send_mask_allow(proc_addr(USR8139)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(PM_PROC_NR)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(FS_PROC_NR)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(IS_PROC_NR)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(CLOCK)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(SYSTASK)->p_sendmask, proc_nr);
send_mask_allow(proc_addr(FXP)->p_sendmask, proc_nr);
return(OK);
}
default:
return(EINVAL);
}
}
/* The system call implemented in this file:
* m_type: SYS_SEGCTL
*
* The parameters for this system call are:
* m4_l3: SEG_PHYS (physical base address)
* m4_l4: SEG_SIZE (size of segment)
* m4_l1: SEG_SELECT (return segment selector here)
* m4_l2: SEG_OFFSET (return offset within segment here)
* m4_l5: SEG_INDEX (return index into remote memory map here)
*
* Author:
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
/*===========================================================================*
* do_segctl *
*===========================================================================*/
PUBLIC int do_segctl(m_ptr)
register message *m_ptr; /* pointer to request message */
{
/* Return a segment selector and offset that can be used to reach a physical
* address, for use by a driver doing memory I/O in the A0000 - DFFFF range.
*/
u16_t selector;
vir_bytes offset;
int i, index;
register struct proc *rp;
phys_bytes phys = (phys_bytes) m_ptr->SEG_PHYS;
vir_bytes size = (vir_bytes) m_ptr->SEG_SIZE;
int result;
/* First check if there is a slot available for this segment. */
rp = proc_addr(m_ptr->m_source);
index = -1;
for (i=0; i < NR_REMOTE_SEGS; i++) {
if (! rp->p_farmem[i].in_use) {
index = i;
rp->p_farmem[i].in_use = TRUE;
rp->p_farmem[i].mem_phys = phys;
rp->p_farmem[i].mem_len = size;
break;
}
}
if (index < 0) return(ENOSPC);
if (! machine.protected) {
selector = phys / HCLICK_SIZE;
offset = phys % HCLICK_SIZE;
result = OK;
} else {
/* Check if the segment size can be recorded in bytes, that is, check
* if descriptor's limit field can delimited the allowed memory region
* precisely. This works up to 1MB. If the size is larger, 4K pages
* instead of bytes are used.
*/
if (size < BYTE_GRAN_MAX) {
init_dataseg(&rp->p_ldt[EXTRA_LDT_INDEX+i], phys, size,
USER_PRIVILEGE);
selector = ((EXTRA_LDT_INDEX+i)*0x08) | (1*0x04) | USER_PRIVILEGE;
offset = 0;
result = OK;
} else {
init_dataseg(&rp->p_ldt[EXTRA_LDT_INDEX+i], phys & ~0xFFFF, 0,
USER_PRIVILEGE);
selector = ((EXTRA_LDT_INDEX+i)*0x08) | (1*0x04) | USER_PRIVILEGE;
offset = phys & 0xFFFF;
result = OK;
}
}
/* Request successfully done. Now return the result. */
m_ptr->SEG_INDEX = index | REMOTE_SEG;
m_ptr->SEG_SELECT = selector;
m_ptr->SEG_OFFSET = offset;
return(result);
}
/* The system call implemented in this file:
* m_type: SYS_IOPENABLE
*
* The parameters for this system call are:
* m2_i2: PROC_NR (process to give I/O Protection Level bits)
*
* Author:
* Jorrit N. Herder <jnherder@cs.vu.nl>
*/
/*===========================================================================*
* do_iopenable *
*===========================================================================*/
PUBLIC int do_iopenable(m_ptr)
register message *m_ptr; /* pointer to request message */
{
#if ENABLE_USERPRIV && ENABLE_USERIOPL
enable_iop(proc_addr(m_ptr->PROC_NR));
return(OK);
#else
return(EPERM);
#endif
}

View file

@ -32,7 +32,6 @@
#include "kernel.h"
#include "proc.h"
#include "ipc.h"
#include "sendmask.h"
#include <minix/com.h>
#include <ibm/int86.h>
@ -61,43 +60,46 @@ PUBLIC char *t_stack[TOT_STACK_SPACE / sizeof(char *)];
* routine and stack size is also provided.
*/
#define IDLE_F (PREEMPTIBLE | BILLABLE)
#define USER_F (PREEMPTIBLE | SCHED_Q_HEAD)
#define SYS_F (PREEMPTIBLE)
#define USER_F (PREEMPTIBLE | RDY_Q_HEAD)
#define SYS_F (PREEMPTIBLE | SYS_PROC)
#define TCB_F (SYS_PROC) /* trusted computing base */
#define IDLE_T 32 /* ticks */
#define USER_T 8 /* ticks */
#define SYS_T 16 /* ticks */
PUBLIC struct system_image image[] = {
{ IDLE, idle_task, IDLE_F, IDLE_T, IDLE_Q, IDLE_S, EMPTY_CALL_MASK, DENY_ALL_MASK, "IDLE" },
{ CLOCK, clock_task, 0, SYS_T, TASK_Q, CLOCK_S, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "CLOCK" },
{ SYSTASK, sys_task, 0, SYS_T, TASK_Q, SYSTEM_S, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "SYS" },
{ HARDWARE, 0, 0, SYS_T, TASK_Q, HARDWARE_S, EMPTY_CALL_MASK, ALLOW_ALL_MASK,"HARDW." },
{ PM_PROC_NR, 0, 0, SYS_T, 3, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "PM" },
{ FS_PROC_NR, 0, 0, SYS_T, 3, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "FS" },
{ IS_PROC_NR, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "IS" },
{ TTY, 0, SYS_F, SYS_T, 1, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "TTY" },
{ MEMORY, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "MEMORY" },
{ IDLE, idle_task, IDLE_F, IDLE_T, IDLE_Q, IDLE_S, EMPTY_CALL_MASK, 0, "IDLE" },
{ CLOCK, clock_task, TCB_F, SYS_T, TASK_Q, CLOCK_S, SYSTEM_CALL_MASK, 0, "CLOCK" },
{ SYSTEM, sys_task, TCB_F, SYS_T, TASK_Q, SYSTEM_S, SYSTEM_CALL_MASK, 0, "SYS" },
{ HARDWARE, 0, 0, SYS_T, TASK_Q, HARDWARE_S, EMPTY_CALL_MASK, 0,"KERNEL" },
{ PM_PROC_NR, 0, TCB_F, SYS_T, 3, 0, SYSTEM_CALL_MASK, 0, "PM" },
{ FS_PROC_NR, 0, TCB_F, SYS_T, 3, 0, SYSTEM_CALL_MASK, 0, "FS" },
{ IS_PROC_NR, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "IS" },
{ TTY, 0, SYS_F, SYS_T, 1, 0, SYSTEM_CALL_MASK, 0, "TTY" },
{ MEMORY, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "MEMORY" },
#if ENABLE_AT_WINI
{ AT_WINI, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "AT_WINI" },
{ AT_WINI, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "AT_WINI" },
#endif
#if ENABLE_FLOPPY
{ FLOPPY, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "FLOPPY" },
{ FLOPPY, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "FLOPPY" },
#endif
#if ENABLE_PRINTER
{ PRINTER, 0, SYS_F, SYS_T, 3, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "PRINTER" },
{ PRINTER, 0, SYS_F, SYS_T, 3, 0, SYSTEM_CALL_MASK, 0, "PRINTER" },
#endif
#if ENABLE_RTL8139
{ USR8139, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "RTL8139" },
{ USR8139, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "RTL8139" },
#endif
#if ENABLE_FXP
{ FXP, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "FXP" },
{ FXP, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "FXP" },
#endif
#if ENABLE_DPETH
{ DPETH, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "DPETH" },
{ DPETH, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "DPETH" },
#endif
{ LOG_PROC_NR, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, ALLOW_ALL_MASK, "LOG" },
{ INIT_PROC_NR, 0, USER_F, USER_T, USER_Q, 0, USER_CALL_MASK, USER_PROC_SENDMASK, "INIT" },
#if ENABLE_LOG
{ LOG_PROC_NR, 0, SYS_F, SYS_T, 2, 0, SYSTEM_CALL_MASK, 0, "LOG" },
#endif
{ INIT_PROC_NR, 0, USER_F, USER_T, USER_Q, 0, USER_CALL_MASK, 0, "INIT" },
};
/* Verify the size of the system image table at compile time. If the number
@ -105,5 +107,5 @@ PUBLIC struct system_image image[] = {
* a compile time error. Note that no space is allocated because 'dummy' is
* declared extern.
*/
extern int dummy[(IMAGE_SIZE==sizeof(image)/sizeof(struct system_image))?1:-1];
extern int dummy[(NR_BOOT_PROCS==sizeof(image)/sizeof(struct system_image))?1:-1];

View file

@ -8,13 +8,12 @@ typedef _PROTOTYPE( void task_t, (void) );
*/
typedef long karg_t; /* use largest type here */
/* Process related types.
* A process number defines the index into the process table. With a signed
* short we can support up to 256 user processes and more kernel tasks than
* one can ever create.
*/
typedef short proc_nr_t; /* process table entry number */
typedef unsigned long send_mask_t; /* bit mask for sender */
/* Process table and system property related types. */
typedef int proc_nr_t; /* process table entry number */
typedef short sys_id_t; /* system process index */
typedef struct { /* bitmap for system indexes */
bitchunk_t chunk[BITMAP_CHUNKS(NR_SYS_PROCS)];
} sys_map_t;
struct system_image {
proc_nr_t proc_nr; /* process number to use */
@ -24,7 +23,7 @@ struct system_image {
int priority; /* scheduling priority */
int stksize; /* stack size for tasks */
char call_mask; /* allowed system calls */
send_mask_t sendmask; /* send mask protection */
long send_mask; /* send mask protection */
char proc_name[P_NAME_LEN]; /* name in process table */
};