This driver can be loaded as an overlay on top of a real block
device, and can then be used to generate block-level failures for
certain transfer requests. Specifically, a rule-based system allows
the user to introduce (overt and silent) data corruption and errors.
It exposes itself through /dev/fbd, and a file system can be mounted
on top of it. The new fbdctl(8) tool can be used to control the
driver; see ``man fbdctl'' for details. It also comes with a test
set, located in test/fbdtest.
This removes a race condition when the block driver performs a
complete restart after a crash (the new default). If any user of
the driver finds out its new endpoint and sends a request to the
new driver instance before this instance has had the chance to
initialize, then its initialization would clear all IPC state and
thereby erroneously cancel the incoming request. Clearing IPC
state is only desired upon a stateful restart (where the driver's
endpoint is retained). This information is now passed to and used
by libblockdriver accordingly.
This stops the printer driver from hanging the entire system when
/dev/lp is opened on systems that do not have a parallel port. With
this change, the printer driver shuts down immediately after loading
on such systems.
Each block driver now gets to specify whether it is a disk block
driver, which implies it wants the library to handle getting and
setting partitions for it.
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.
. always compile acpi, with clang, so never have
build/clean inconsistencies; can be enabled (i.e. run
at boot time) by setting acpi variable in the boot monitor
. always strip binaries with the right strip cmd, so never
have ack/elf strip inconsistencies
. rc script and service know to look in /usr/pkg/.. for
extra binaries and conf files
. service split into parsing config and doing RS request
so that a new utility (printconfig) can just print the
config in machine-parseable format for netconf integration
. converted all base system eth drivers/netconf
While no problems have been observed in practice yet, modern compilers
may reorder memory access operations, and that could lead to problems
with memory-mapped I/O typically done by drivers. This patch prevents
any potentially problematic reordering by the compiler in the ATL2
driver.
In addition, this patch removes a number of gcc/clang warnings.
While no problems have been observed in practice yet, modern compilers
may reorder memory access operations, and that could lead to problems
with memory-mapped I/O typically done by drivers. This patch prevents
any potentially problematic reordering by the compiler in the AHCI
driver.
This patch adds support for executing multiple concurrent requests on
different devices on the same AHCI controller. The libdriver library
has been extended to include a generic multithreading interface, and
the AHCI driver has been extended to make use of this interface.
The original version of this code has been written by Arne Welzel.
Improves cache locality by grouping together dependency generation
with building for each program instead of doing a whole-tree dep
generation phase followed by a whole-tree build phase
. it's a good extra interface to have but doesn't
meet standardised functionality
. applications (in pkgsrc) find it and expect
full functionality the minix mmap doesn't offter
. on the whole probably better to hide these functions
(mmap and friends) until they are grown up; the base system
can use the new minix_* names
- the pointers must be flagged as volatile because otherwise they
might be "optimized" by a compiler. It is a common good
practice to access the registers this way, the keyword is in C
for a reason.
- for instance, in eeprom_eerd() when polling a register the
compiler, under certain conditions, may decide upon the first
read and if it does not break the loop it assumes that the
value is not going to change and thus stays in an infinite
loop.
3 sets of libraries are built now:
. ack: all libraries that ack can compile (/usr/lib/i386/)
. clang+elf: all libraries with minix headers (/usr/lib/)
. clang+elf: all libraries with netbsd headers (/usr/netbsd/)
Once everything can be compiled with netbsd libraries and headers, the
/usr/netbsd hierarchy will be obsolete and its libraries compiled with
netbsd headers will be installed in /usr/lib, and its headers
in /usr/include. (i.e. minix libc and current minix headers set
will be gone.)
To use the NetBSD libc system (libraries + headers) before
it is the default libc, see:
http://wiki.minix3.org/en/DevelopersGuide/UsingNetBSDCode
This wiki page also documents the maintenance of the patch
files of minix-specific changes to imported NetBSD code.
Changes in this commit:
. libsys: Add NBSD compilation and create a safe NBSD-based libc.
. Port rest of libraries (except libddekit) to new header system.
. Enable compilation of libddekit with new headers.
. Enable kernel compilation with new headers.
. Enable drivers compilation with new headers.
. Port legacy commands to new headers and libc.
. Port servers to new headers.
. Add <sys/sigcontext.h> in compat library.
. Remove dependency file in tree.
. Enable compilation of common/lib/libc/atomic in libsys
. Do not generate RCSID strings in libc.
. Temporarily disable zoneinfo as they are incompatible with NetBSD format
. obj-nbsd for .gitignore
. Procfs: use only integer arithmetic. (Antoine Leca)
. Increase ramdisk size to create NBSD-based images.
. Remove INCSYMLINKS handling hack.
. Add nbsd_include/sys/exec_elf.h
. Enable ELF compilation with NBSD libc.
. Add 'make nbsdsrc' in tools to download reference NetBSD sources.
. Automate minix-port.patch creation.
. Avoid using fstavfs() as it is *extremely* slow and unneeded.
. Set err() as PRIVATE to avoid name clash with libc.
. [NBSD] servers/vm: remove compilation warnings.
. u32 is not a long in NBSD headers.
. UPDATING info on netbsd hierarchy
. commands fixes for netbsd libc
sys_umap now supports only:
- looking up the physical address of a virtual address in the address space
of the caller;
- looking up the physical address of a grant for which the caller is the
grantee.
This is enough for nearly all umap users. The new sys_umap_remote supports
lookups in arbitrary address spaces and grants for arbitrary grantees.
- when ACPI does not find mappings for pci brdiges, do no panic,
only report a warning and continue to a fallback which uses
only the root bus IRQ routing table. Fail only if that is not
present.
Before safecopies, the IO_ENDPT and DL_ENDPT message fields were needed
to know which actual process to copy data from/to, as that process may
not always be the caller. Now that we have full safecopy support, these
fields have become useless for that purpose: the owner of the grant is
*always* the caller. Allowing the caller to supply another endpoint is
in fact dangerous, because the callee may then end up using a grant
from a third party. One could call this a variant of the confused
deputy problem.
From now on, safecopy calls should always use the caller's endpoint as
grant owner. This fully obsoletes the DL_ENDPT field in the
inet/ethernet protocol. IO_ENDPT has other uses besides identifying the
grant owner though. This patch renames IO_ENDPT to USER_ENDPT, not only
because that is a more fitting name (it should never be used for I/O
after all), but also in order to intentionally break any old system
source code outside the base system. If this patch breaks your code,
fixing it is fairly simple:
- DL_ENDPT should be replaced with m_source;
- IO_ENDPT should be replaced with m_source when used for safecopies;
- IO_ENDPT should be replaced with USER_ENDPT for any other use, e.g.
when setting REP_ENDPT, matching requests in CANCEL calls, getting
DEV_SELECT flags, and retrieving of the real user process's endpoint
in DEV_OPEN.
The changes in this patch are binary backward compatible.
M include/Makefile
A include/minix/input.h
M include/minix/com.h
M drivers/tty/keyboard.c
M drivers/tty/tty.c
M drivers/tty/tty.h
M include/minix/syslib.h
M lib/libsys/Makefile
A lib/libsys/input.c
- every pci device which implements _PRT acpi method is considered to
be a pci-to-pci bridge
- acpi driver constructs a hierarchy of pci-to-pci bridges
- when pci driver identifies a pci-to-pci bridge it tells acpi driver
what is the primary and the secondary bus for this device
- when pci requests IRQ routing information from acpi, it passes the
bus number too to be able to identify the device accurately
- kernel turns on IO APICs if no_apic is _not_ set or is equal 0
- pci driver must use the acpi driver to setup IRQ routing otherwise
the system cannot work correctly except systems like KVM that use
only legacy (E)ISA IRQs 0-15
- PCI must query ACPI, if (IO)APIC is in use, for the routing
information and change the ILR (interrupt line register) of each
device accordingly so drivers use the right IRQ.
- 99% of the code is Intel's ACPICA. The license is compliant with BSD
and GNU and virtually all systems that use ACPI use this code, For
instance it is part of the Linux kernel.
- The only minix specific files are
acpi.c
osminixxf.c
platform/acminix.h
and
include/minix/acpi.h
- At the moment the driver does not register interrupt hooks which I
believe is mainly for handling PnP, events like "battery level is
low" and power management. Should not be difficult to add it if need
be.
- The interface to the outside world is virtually non-existent except
a trivial message based service for PCI driver to query which device
is connected to what IRQ line. This will evolve as more components
start using this driver. VM, Scheduler and IOMMU are the possible
users right now.
- because of dependency on a native 64bit (long long, part of c99) it
is compiled only with a gnu-like compilers which in case of Minix
includes gcc llvm-gcc and clang
- check the DF status flag after each command
- increase I/O timeout from 15 to 30 seconds
- share some code between ATA and ATAPI after all
- produce more accurate errors on DIOCEJECT
- rename AHCI_ID_SIZE to the more appropriate ATA_ID_SIZE
- rearrange ahci.h in a now more sensible way
patch to allow MINIX to boot from ext2.
To create a setup with MINIX on ext2, follow these steps:
- Assumptions:
- there exists a primary partition c0dApB with a MINIX installation
with GRUB support (/boot/image_latest exists on /dev/c0dApB)
- there exists a free primary partition c0dCpD
- Create an ext2 filesystem on c0dApB (from Linux, until Tthom
has ported mke2fs)
- Follow these steps (from a MINIX CD with ext2 support, another MINIX
installation (not c0dApB) or Linux >= 2.6.35):
mkdir /mnt/mfs /mnt/ext2
mount /dev/c0dApBs0 /mnt/mfs
mount /dev/c0dApBs1 /mnt/mfs/home
mount /dev/c0dApBs2 /mnt/mfs/usr
mount /dev/c0dCpD /mnt/ext2
synctree -f /mnt/mfs /mnt/ext2
echo root=/dev/c0dCpD > /mnt/ext2/etc/fstab
(note: no subpartitions used because that would confuse an unmodified
bootloader)
- Add the new MINIX installation to GRUB according to steps 7&8 in
http://wiki.minix3.org/en/SummerOfCode2010/MultiBoot/HowTo
This eliminates a race condition between the disk driver calling
sys_statectl(SYS_STATE_CLEAR_IPC_REFS) as part of driver_announce(),
and the root MFS calling sendrec(DEV_OPEN) on the disk driver.
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
model to an instance-based model. Each ethernet driver instance is now
responsible for exactly one network interface card. The port field in
/etc/inet.conf now acts as an instance field instead.
This patch also updates the data link protocol. This update:
- eliminates the concept of ports entirely;
- eliminates DL_GETNAME entirely;
- standardizes on using m_source for IPC and DL_ENDPT for safecopies;
- removes error codes from TASK/STAT replies, as they were unused;
- removes a number of other old or unused fields;
- names and renames a few other fields.
All ethernet drivers have been changed to:
- conform to the new protocol, and exactly that;
- take on an instance number based on a given "instance" argument;
- skip that number of PCI devices in probe iterations;
- use config tables and environment variables based on that number;
- no longer be limited to a predefined maximum of cards in any way;
- get rid of any leftover non-safecopy support and other ancient junk;
- have a correct banner protocol figure, or none at all.
Other changes:
* Inet.conf is now taken to be line-based, and supports #-comments.
No existing installations are expected to be affected by this.
* A new, select-based asynchio library replaces the old one.
Kindly contributed by Kees J. Bot.
* Inet now supports use of select() on IP devices.
Combined, the last two changes together speed up dhcpd
considerably in the presence of multiple interfaces.
* A small bug has been fixed in nonamed.
VFS CHANGES:
- dmap table no longer statically initialized in VFS
- Dropped FSSIGNON svrctl call no longer used by INET
INET CHANGES:
- INET announces its presence to VFS just like any other driver
RS CHANGES:
- The boot image dev table contains all the data to initialize VFS' dmap table
- RS interface supports asynchronous up and update operations now
- RS interface extended to support driver style and flags