. fold 2 exception-in-kernel cases (pagefault and rest)
into 1
. for exceptions that occur in kernel, don't just print
kernel stacktrace (typically that is just the exception
handler) but also the stacktrace of when the exception
happened
. remove a few asserts in the kernel and 64bi library
that are not compatible with the timing code
. change the TIME_BLOCKS code a little to work in-kernel
Before safecopies, the IO_ENDPT and DL_ENDPT message fields were needed
to know which actual process to copy data from/to, as that process may
not always be the caller. Now that we have full safecopy support, these
fields have become useless for that purpose: the owner of the grant is
*always* the caller. Allowing the caller to supply another endpoint is
in fact dangerous, because the callee may then end up using a grant
from a third party. One could call this a variant of the confused
deputy problem.
From now on, safecopy calls should always use the caller's endpoint as
grant owner. This fully obsoletes the DL_ENDPT field in the
inet/ethernet protocol. IO_ENDPT has other uses besides identifying the
grant owner though. This patch renames IO_ENDPT to USER_ENDPT, not only
because that is a more fitting name (it should never be used for I/O
after all), but also in order to intentionally break any old system
source code outside the base system. If this patch breaks your code,
fixing it is fairly simple:
- DL_ENDPT should be replaced with m_source;
- IO_ENDPT should be replaced with m_source when used for safecopies;
- IO_ENDPT should be replaced with USER_ENDPT for any other use, e.g.
when setting REP_ENDPT, matching requests in CANCEL calls, getting
DEV_SELECT flags, and retrieving of the real user process's endpoint
in DEV_OPEN.
The changes in this patch are binary backward compatible.
- kernel maintains a cpu_info array which contains various
information about each cpu as filled when each cpu boots
- the information contains idetification, features etc.
- flush TLB of processes only if the page tables has been changed and
the page tables of this process are already loaded on this cpu which
means that there might be stale entries in TLB. Until now SMP was
always flushing TLB to make sure everything is consistent.
- accidentaly this wasn't part of the SMP merge and the implementation
remained uncomplete with the timer keeping ticking periodically
- APIC timer is set for a signel shot and restarted everytime it
expires. This way we can keep the AP's trully idle
- the timer is restarted a little later before leaving to userspace
- LAPIC_TIMER_ICR is written before LAPIC_LVTTR so the newest value is
used
- fixed spurious and error interrupt handlers
- not to hog the system the warning isn't reported every time, just
once every 100 times, similarly for the spurious PIC interrupts
- a different set of MSRs and performance counters is used on AMD
- when initializing NMI watchdog the test for Intel architecture
performance counters feature only applies to Intel now
- NMI is enabled if the CPU belongs to a family which has the
performance counters that we use
- sometimes the system needs to know precisely on what type of cpu is
running. The cpu type id detected during arch specific
initialization and kept in the machine structure for later use.
- as a side-effect the information is exported to userland
- the Intel architecture cycle counter (performance counter) does not
count when the CPU is idle therefore we use busy loop instead of
halting the cpu when there is nothing to schedule
- the downside is that handling interrupts may be accounted as idle
time if a sample is taken before we get out of the nested trap and
pick a new process
- if profile --nmi kernel uses NMI watchdog based sampling based on
Intel architecture performance counters
- using NMI makes kernel profiling possible
- watchdog kernel lockup detection is disabled while sampling as we
may get unpredictable interrupts in kernel and thus possibly many
false positives
- if watchdog is not enabled at boot time, profiling enables it and
turns it of again when done
- contributed by Bjorn Swift
- adds process accounting, for example counting the number of messages
sent, how often the process was preemted and how much time it spent
in the run queue. These statistics, along with the current cpu load,
are sent back to the user-space scheduler in the Out Of Quantum
message.
- the user-space scheduler may choose to make use of these statistics
when making scheduling decisions. For isntance the cpu load becomes
especially useful when scheduling on multiple cores.
- when a process is migrated to a different CPU it may have an active
FPU context in the processor registers. We must save it and migrate
it together with the process.
- EBADCPU is returned is scheduler tries to run a process on a CPU
that either does not exist or isn't booted
- this change was originally meant to deal with stupid cpuid
instruction which provides totally useless information about
hyper-threading and MPS which does not deal with ht at all. ACPI
provides correct information. If ht is turned off it looks like some
CPUs failed to boot. Nevertheless this patch may be handy for
testing/benchmarking in the future.
- this makes sure that each process always run with updated TLB
- this is the simplest way how to achieve the consistency. As it means
significant performace degradation when not require, this is nto the
final solution and will be refined
- APIC timer always reprogrammed if expired
- timer tick never happens when in kernel => never immediate return
from userspace to kernel because of a buffered interrupt
- renamed argument to lapic_set_timer_one_shot()
- removed arch_ prefix from timer functions
- any cpu can use smp_schedule() to tell another cpu to reschedule
- if an AP is idle, it turns off timer as there is nothing to
preempt, no need to wakeup just to go back to sleep again
- if a cpu makes a process runnable on an idle cpu, it must wake it up
to reschedule
- pressing 'B' on the serial cnsole prints statistics for BKL per cpu.
- 'b' resets the counters
- it presents number of cycles each CPU spends in kernel, how many
cycyles it spends spinning while waiting for the BKL
- it shows optimistic estimation in how many cases we get the lock
immediately without spinning. As the test is not atomic the lock may
be already held by some other cpu before we actually try to acquire
it.
- cross-address space copies use these slots to map user memory for
kernel. This avoid any collisions between CPUs
- well, we only have a single CPU running at a time, this is just to
be safe for the future
- apic_send_ipi() to send inter-processor interrupts (IPIs)
- APIC IPI schedule and halt handlers to signal x-cpu that a cpu shold
reschedule or halt
- various little changes to let APs run
- no processes are scheduled at the APs and therefore they are idle
except being interrupted by a timer time to time
- tsc_ctr_switch is made cpu local
- although an x86 specific variable it must be declared globaly as the
cpulocal implementation does not allow otherwise
- each CPU has its own runqueues
- processes on BSP are put on the runqueues later after a switch to
the final stack when cpuid works to avoid special cases
- enqueue() and dequeue() use the run queues of the cpu the process is
assigned to
- pick_proc() uses the local run queues
- printing of per-CPU run queues ('2') on serial console
- APs configure local timers
- while configuring local APIC timer the CPUs fiddle with the interrupt
handlers. As the interrupt table is shared the BSP must not run
- APs wait until BSP turns paging on, it is not possible to safely
execute any code on APs until we can turn paging on as well as it
must be done synchronously everywhere
- APs turn paging on but do not continue and wait
- to isolate execution inside kernel we use a big kernel lock
implemented as a spinlock
- the lock is acquired asap after entering kernel mode and released as
late as possible. Only one CPU as a time can execute the core kernel
code
- measurement son real hw show that the overhead of this lock is close
to 0% of kernel time for the currnet system
- the overhead of this lock may be as high as 45% of kernel time in
virtual machines depending on the ratio between physical CPUs
available and emulated CPUs. The performance degradation is
significant
- kernel detects CPUs by searching ACPI tables for local apic nodes
- each CPU has its own TSS that points to its own stack. All cpus boot
on the same boot stack (in sequence) but switch to its private stack
as soon as they can.
- final booting code in main() placed in bsp_finish_booting() which is
executed only after the BSP switches to its final stack
- apic functions to send startup interrupts
- assembler functions to handle CPU features not needed for single cpu
mode like memory barries, HT detection etc.
- new files kernel/smp.[ch], kernel/arch/i386/arch_smp.c and
kernel/arch/i386/include/arch_smp.h
- 16-bit trampoline code for the APs. It is executed by each AP after
receiving startup IPIs it brings up the CPUs to 32bit mode and let
them spin in an infinite loop so they don't do any damage.
- implementation of kernel spinlock
- CONFIG_SMP and CONFIG_MAX_CPUS set by the build system
- most global variables carry information which is specific to the
local CPU and each CPU must have its own copy
- cpu local variable must be declared in cpulocal.h between
DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
DECLARE_CPULOCAL macro
- to access the cpu local data the provided macros must be used
get_cpu_var(cpu, name)
get_cpu_var_ptr(cpu, name)
get_cpulocal_var(name)
get_cpulocal_var_ptr(name)
- using this macros makes future changes in the implementation
possible
- switching to ELF will make the declaration of cpu local data much
simpler, e.g.
CPULOCAL int blah;
anywhere in the kernel source code
- kernel turns on IO APICs if no_apic is _not_ set or is equal 0
- pci driver must use the acpi driver to setup IRQ routing otherwise
the system cannot work correctly except systems like KVM that use
only legacy (E)ISA IRQs 0-15
- kernel exports DSDP (the root pointer where ACPI parsing starts) and
apic_enabled in the machine structure.
- ACPI driver uses DSDP to locate ACPI in memory. acpi_enabled tell
PCI driver to query ACPI for IRQ routing information.
- the ability for kernel to use ACPI tables to detect IO APICs. It is
the bare minimum the kernel needs to know about ACPI tables.
- it will be used to find out about processors as the MPS tables are
deprecated by ACPI and not all vendorsprovide them.
- removes p_delivermsg_lin item from the process structure and code
related to it
- as the send part, the receive does not need to use the
PHYS_COPY_CATCH() and umap_local() couple.
- The address space of the target process is installed before
delivermsg() is called.
- unlike the linear address, the virtual address does not change when
paging is turned on nor after fork().
- FPU context is stored only if conflict between 2 FPU users or while
exporting context of a process to userspace while it is the active
user of FPU
- FPU has its owner (fpu_owner) which points to the process whose
state is currently loaded in FPU
- the FPU exception is only turned on when scheduling a process which
is not the owner of FPU
- FPU state is restored for the process that generated the FPU
exception. This process runs immediately without letting scheduler
to pick a new process to resolve the FPU conflict asap, to minimize
the FPU thrashing and FPU exception hadler execution
- faster all non-FPU-exception kernel entries as FPU state is not
checked nor saved
- removed MF_USED_FPU flag, only MF_FPU_INITIALIZED remains to signal
that a process has used FPU in the past
There seems to have been a broken assumption in the fpu context
restoring code. It restores the context of the running process, without
guarantee that the current process is the one that will be scheduled.
This caused fpu saving for a different process to be triggered without
fpu hardware being enabled, causing an fpu exception in the kernel. This
practically only shows up with DEBUG_RACE on. Fix my thruby+me.
The fix
. is to only set the fpu-in-use-by-this-process flag in the
exception handler, and then take care of fpu restoring when
actually returning to userspace
And the patch
. translates fpu saving and restoring to c in arch_system.c,
getting rid of a juicy chunk of assembly
. makes osfxsr_feature private to arch_system.c
. removes most of the arch dependent code from do_sigsend
- Currently the cpu time quantum is timer-ticks based. Thus the
remaining quantum is decreased only if the processes is interrupted
by a timer tick. As processes block a lot this typically does not
happen for normal user processes. Also the quantum depends on the
frequency of the timer.
- This change makes the quantum miliseconds based. Internally the
miliseconds are translated into cpu cycles. Everytime userspace
execution is interrupted by kernel the cycles just consumed by the
current process are deducted from the remaining quantum.
- It makes the quantum system timer frequency independent.
- The boot processes quantum is loosely derived from the tick-based
quantas and 60Hz timer and subject to future change
- the 64bit arithmetics is a little ugly, will be changes once we have
compiler support for 64bit integers (soon)
-Makefile updates
-Update mkdep
-Build fixes/warning cleanups for some programs
-Restore leading underscores on global syms in kernel asm files
-Increase ramdisk size
ask to map in oxpcie i/o memory and support serial i/o for it in the
kernel. set oxpcie=<address> in boot monitor (retrieve address using
pci_debug=1 output). (no sanity checking is done on the address
currently.) disabled by default.
The change also contains some other minor cleanup (a new serial.h to set
register info common to UART and the OXPCIe card, in-kernel memory
mapping a little more structured and env_get() to get sysenv variables
without knowing about the params_buffer).
- this patch only renames schedcheck() to switch_to_user(),
cycles_accounting_stop() to context_stop() and restart() to
+restore_user_context()
- the motivation is that since the introduction of schedcheck() it has
been abused for many things. It deserves a better name. It should
express the fact that from the moment we call the function we are in
the process of switching to user.
- cycles_accounting_stop() was originally a single purpose function.
As this function is called at were convenient places it is used in
for other things too, e.g. (un)locking the kernel. Thus it deserves
a better name too.
- using the old name, restart() does not call schedcheck(), however
calls to restart are replaced by calls to schedcheck()
[switch_to_user] and it calls restart() [restore_user_context]
- this patch moves the former printslot() from arch_system.c to
debug.c and reimplements it slightly. The output is not changed,
however, the process information is printed in a separate function
print_proc() in debug.c as such a function is also handy in other
situations and should be publicly available when debugging.
this patch changes the way pagefaults are delivered to VM. It adopts
the same model as the out-of-quantum messages sent by kernel to a
scheduler.
- everytime a userspace pagefault occurs, kernel creates a message
which is sent to VM on behalf of the faulting process
- the process is blocked on delivery to VM in the standard IPC code
instead of waiting in a spacial in-kernel queue (stack) and is not
runnable until VM tell kernel that the pagefault is resolved and is
free to clear the RTS_PAGEFAULT flag.
- VM does not need call kernel and poll the pagefault information
which saves many (1/2?) calls and kernel calls that return "no more
data"
- VM notification by kernel does not need to use signals
- each entry in proc table is by 12 bytes smaller (~3k save)
this patch does not add or change any functionality of do_ipc(), it
only makes things a little cleaner (hopefully).
Until now do_ipc() was responsible for handling all ipc calls. The
catch is that SENDA is fairly different which results in some ugly
code like this typecasting and variables naming which does not make
much sense for SENDA and makes the code hard to read.
result = mini_senda(caller_ptr, (asynmsg_t *)m_ptr, (size_t)src_dst_e);
As it is called directly from assembly, the new do_ipc() takes as
input values of 3 registers in reg_t variables (it used to be 4,
however, bit_map wasn't used so I removed it), does the checks common
to all ipc calls and call the appropriate handler either for
do_sync_ipc() (all except SENDA) or mini_senda() (for SENDA) while
typecasting the reg_t values correctly. As a result, handling SENDA
differences in do_sync_ipc() is no more needed. Also the code that
uses msg_size variable is improved a little bit.
arch_do_syscall() is simplified too.
- cotributed by Bjorn Swift
- In this first phase, scheduling is moved from the kernel to the PM
server. The next steps are to a) moving scheduling to its own server
and b) include useful information in the "out of quantum" message,
so that the scheduler can make use of this information.
- The kernel process table now keeps record of who is responsible for
scheduling each process (p_scheduler). When this pointer is NULL,
the process will be scheduled by the kernel. If such a process runs
out of quantum, the kernel will simply renew its quantum an requeue
it.
- When PM loads, it will take over scheduling of all running
processes, except system processes, using sys_schedctl().
Essentially, this only results in taking over init. As children
inherit a scheduler from their parent, user space programs forked by
init will inherit PM (for now) as their scheduler.
- Once a process has been assigned a scheduler, and runs out of
quantum, its RTS_NO_QUANTUM flag will be set and the process
dequeued. The kernel will send a message to the scheduler, on the
process' behalf, informing the scheduler that it has run out of
quantum. The scheduler can take what ever action it pleases, based
on its policy, and then reschedule the process using the
sys_schedule() system call.
- Balance queues does not work as before. While the old in-kernel
function used to renew the quantum of processes in the highest
priority run queue, the user-space implementation only acts on
processes that have been bumped down to a lower priority queue.
This approach reacts slower to changes than the old one, but saves
us sending a sys_schedule message for each process every time we
balance the queues. Currently, when processes are moved up a
priority queue, their quantum is also renewed, but this can be
fiddled with.
- do_nice has been removed from kernel. PM answers to get- and
setpriority calls, updates it's own nice variable as well as the
max_run_queue. This will be refactored once scheduling is moved to a
separate server. We will probably have PM update it's local nice
value and then send a message to whoever is scheduling the process.
- changes to fix an issue in do_fork() where processes could run out
of quantum but bypassing the code path that handles it correctly.
The future plan is to remove the policy from do_fork() and implement
it in userspace too.
- ack assumes that the direction flag in eflags is clear when
assigning two structures. It is implemented by a call to a built-in
function which is like memcpy but needs the flag to be clear
otherwise rubish is copied. This patch fixes the kernel entries.
- When the cpu halts, the interrupts are enable so the cpu may be
woken up. When the interrupt handler returns but another interrupt
is available it is also serviced immediately. This is not a problem
per-se. It only slightly breaks time accounting as idle accounted is
for the kernel time in the interrupt handler.
- As the big kernel lock is lock/unlocked in the smp branch in the
time acounting functions as they are called exactly at the places
we need to take the lock) this leads to a deadlock.
- we make sure that once the interrupt handler returns from the nested
trap, the interrupts are disabled. This means that only one
interrupt is serviced after idle is interrupted.
- this requires the loop in apic timer calibration to keep reenabling
the interrupts. I admit it is a little bit hackish (one line),
however, this code is a stupid corner case at the boot time.
Hopefully it does not matter too much.
- before enabling paging VM asks kernel to resize its segments. This
may cause kernel to segfault if APIC is used and an interrupt
happens between this and paging enabled. As these are 2 separate
vmctl calls it is not atomic. This patch fixes this problem. VM does
not ask kernel to resize the segments in a separate call anymore.
The new segments limit is part of the "enable paging" call. It
generalizes this call in such a way that more information can be
passed as need be or the information may be completely different if
another architecture requires this.
- if an exception occurs in kernel and this exception is not handled
in an sane way and the kernel crashes, it also dumps what was loaded
in the general purpose registers exactly at the time of the
exception to help to debug the problem
the kernel. They are not used atm, but having them in trunk allows them
to be easily used when needed. To set a breakpoint that triggers when
the variable foo is written to (the most common use case), one calls:
breakpoint_set(vir2phys((vir_bytes) &foo), 0,
BREAKPOINT_FLAG_MODE_GLOBAL |
BREAKPOINT_FLAG_RW_WRITE |
BREAKPOINT_FLAG_LEN_4);
It can later be disabled using:
breakpoint_set(vir2phys((vir_bytes) &foo), 0,
BREAKPOINT_FLAG_MODE_OFF);
There are some limitations:
- There are at most four breakpoints (hardware limit); the index of the
breakpoint (0-3) is specified as the second parameter of
breakpoint_set.
- The breakpoint exception in the kernel is not handled and causes a
panic; it would be reasonably easy to change this by inspecing DR6,
printing a message, disabling the breakpoint and continuing. However,
in my experience even just a panic can be very useful.
- Breakpoints can be set only in the part of the address space that is
in every page table. It is useful for the kernel, but to use this for
user processes would require saving and restoring the debug registers
as part of the context switch. Although the CPU provides support for
local breakpoints (I implemened this as BREAKPOINT_FLAG_LOCAL) they
only work if task switching is used.
forget about the dirtypde bitmap and WIPEPDE/DONEPDE macros too.
check if mapping happens to already be in place, and if so, don't
reload cr3 (on the account of that mapping, that is).
don't reload cr3 unconditionally.
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
Move archtypes.h to include/ dir, since several servers require it. Move
fpu.h and stackframe.h to arch-specific header directory. Make source
files and makefiles aware of the new header locations.
-Convert the include directory over to using bsdmake
syntax
-Update/add mkfiles
-Modify install(1) so that it can create symlinks
-Update makefiles to use new install(1) options
-Rename /usr/include/ibm to /usr/include/i386
-Create /usr/include/machine symlink to arch header files
-Move vm_i386.h to its new home in the /usr/include/i386
-Update source files to #include the header files at their
new homes.
-Add new gnu-includes target for building GCC headers
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
process waiting for" logic, which is duplicated a few times in the
kernel. (For a new feature for top.)
Introducing it and throwing out ESRCDIED and EDSTDIED (replaced by
EDEADSRCDST - so we don't have to care which part of the blocking is
failing in system.c) simplifies some code in the kernel and callers that
check for E{DEADSRCDST,ESRCDIED,EDSTDIED}, but don't care about the
difference, a fair bit, and more significantly doesn't duplicate the
'blocked-on' logic.
- as thre are still KERNEL and IDLE entries, time accounting for
kernel and idle time works the same as for any other process
- everytime we stop accounting for the currently running process,
kernel or idle, we read the TSC counter and increment the p_cycles
entry.
- the process cycles inherently include some of the kernel cycles as
we can stop accounting for the process only after we save its
context and we start accounting just before we restore its context
- this assumes that the system does not scale the CPU frequency which
will be true for ... long time ;-)
- there are no tasks running, we don't need TASK_PRIVILEGE priviledge anymore
- as there is no ring 1 anymore, there is no need for level0() to call sensitive
code from ring 1 in ring 0
- 286 related macros removed as clean up
* Userspace change to use the new kernel calls
- _taskcall(SYSTASK...) changed to _kernel_call(...)
- int 32 reused for the kernel calls
- _do_kernel_call() to make the trap to kernel
- kernel_call() to make the actuall kernel call from C using
_do_kernel_call()
- unlike ipc call the kernel call always succeeds as kernel is
always available, however, kernel may return an error
* Kernel side implementation of kernel calls
- the SYSTEm task does not run, only the proc table entry is
preserved
- every data_copy(SYSTEM is no data_copy(KERNEL
- "locking" is an empty operation now as everything runs in
kernel
- sys_task() is replaced by kernel_call() which copies the
message into kernel, dispatches the call to its handler and
finishes by either copying the results back to userspace (if
need be) or by suspending the process because of VM
- suspended processes are later made runnable once the memory
issue is resolved, picked up by the scheduler and only at
this time the call is resumed (in fact restarted) which does
not need to copy the message from userspace as the message
is already saved in the process structure.
- no ned for the vmrestart queue, the scheduler will restart
the system calls
- no special case in do_vmctl(), all requests remove the
RTS_VMREQUEST flag
- copies a mesage from/to userspace without need of translating
addresses
- the assumption is that the address space is installed, i.e. ldt and
cr3 are loaded correctly
- if a pagefault or a general protection occurs while copying from
userland to kernel (or vice versa) and error is returned which gives
the caller a chance to respond in a proper way
- error happens _only_ because of a wrong user pointer if the function
is used correctly
- if the prerequisites of the function do no hold, the function will
most likely fail as the user address becomes random
- switch_address_space() implements a switch of the user address space
for the destination process
- this makes memory of this process easily accessible, e.g. a pointer
valid in the userspace can be used with a little complexity to
access the process's memory
- the switch does not happed only just before we return to userspace,
however, it happens right after we know which process we are going
to schedule. This happens before we start processing the misc flags
of this process so its memory is available
- if the process becomes not runnable while processing the mics flags
we pick a new process and we switch the address space again which
introduces possibly a little bit more overhead, however, it is
hopefully hidden by reducing the overheads when we actually access
the memory
- the syscalls are pretty much just ipc calls, however, sendrec() is
used to implement system task (sys) calls
- sendrec() won't be used anymore for this, therefore ipc calls will
become pure ipc calls
kernel (sys task). The main reason is that these would have to become
cpu local variables on SMP. Once the system task is not a task but a
genuine part of the kernel there is even less reason to have these
extra variables as proc_ptr will already contain all neccessary
information. In addition converting who_e to the process pointer and
back again all the time will be avoided.
Although proc_ptr will contain all important information, accessing it
as a cpu local variable will be fairly expensive, hence the value
would be assigned to some on stack local variable. Therefore it is
better to add the 'caller' argument to the syscall handlers to pass
the value on stack anyway. It also clearly denotes on who's behalf is
the syscall being executed.
This patch also ANSIfies the syscall function headers.
Last but not least, it also fixes a potential bug in virtual_copy_f()
in case the check is disabled. So far the function in case of a
failure could possible reuse an old who_p in case this function had
not been called from the system task.
virtual_copy_f() takes the caller as a parameter too. In case the
checking is disabled, the caller must be NULL and non NULL if it is
enabled as we must be able to suspend the caller.
Some cases were fixed by declaring the function void, others were fixed
by adding a return <value> statement, thereby avoiding potentially
incorrect behavior (usually in error handling).
Some enum correctness in boot.c.
There is not that much use for it on a single CPU, however, deadlock
between kernel and system task can be delected. Or a runaway loop.
If a kernel gets locked up the timer interrupts don't occure (as all
interrupts are disabled in kernel mode). The only chance is to
interrupt the kernel by a non-maskable interrupt.
This patch generates NMIs using performance counters. It uses the most
widely available performace counters. As the performance counters are
highly model-specific this patch is not guaranteed to work on every
machine. Unfortunately this is also true for KVM :-/ On the other
hand adding this feature for other models is not extremely difficult
and the framework makes it hopefully easy enough.
Depending on the frequency of the CPU an NMI is generated at most
about every 0.5s If the cpu's speed is less then 2Ghz it is generated
at most every 1s. In general an NMI is generated much less often as
the performance counter counts down only if the cpu is not idle.
Therefore the overhead of this feature is fairly minimal even if the
load is high.
Uppon detecting that the kernel is locked up the kernel dumps the
state of the kernel registers and panics.
Local APIC must be enabled for the watchdog to work.
The code is _always_ compiled in, however, it is only enabled if
watchdog=<non-zero> is set in the boot monitor.
One corner case is serial console debugging. As dumping a lot of stuff
to the serial link may take a lot of time, the watchdog does not
detect lockups during this time!!! as it would result in too many
false positives. 10 nmi have to be handled before the lockup is
detected. This means something between ~5s to 10s.
Another corner case is that the watchdog is enabled only after the
paging is enabled as it would be pure madness to try to get it right.
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
natively (labels, memory ranges, memory mapped ranges).
- For further information:
http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants
Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
calls.
- Better input checking in syslib: check for page alignment when creating
memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
- if debugging on serial console is enabled typing Q kills the system. It is
handy if the system gets locked up and the timer interrupts still work. Good
for remote debugging.
- NOT_REACHABLE reintroduced and fixed. It should be used for marking code which
is not reachable because the previous code _should_ not return. Such places
are not always obvious
- gas2ack cannot handle all variants of some instructions. Until this issues is
addressed, this patch places a big warning where appropriate. This code is not
supposed to change frequently.
- local APIC timer used as the source of time
- PIC is still used as the hw interrupt controller as we don't have
enough info without ACPI or MPS to set up IO APICs
- remapping of APIC when switching paging on, uses the new mechanism
to tell VM what phys areas to map in kernel's virtual space
- one more step to SMP
based on code by Arun C.
- idle task becomes a pseudo task which is never scheduled. It is never put on
any run queue and never enters userspace. An entry for this task still remains
in the process table for time accounting
- Instead of panicing if there is not process to schedule, pick_proc() returns
NULL which is a signal to put the cpu in an idle state and set everything in
such a way that after receiving and interrupt it looks like idle task was
preempted
- idle task is set non-preemptible to avoid handling in the timer interrupt code
which make userspace scheduling simpler as idle task does not need to be
handled as a special case.
- after a trap to kernel, the code automatically switches to kernel
stack, in the future local to the CPU
- k_reenter variable replaced by a test whether the CS is kernel cs or
not. The information is passed further if needed. Removes a global
variable which would need to be cpu local
- no need for global variables describing the exception or trap
context. This information is kept on stack and a pointer to this
structure is passed to the C code as a single structure
- removed loadedcr3 variable and its use replaced by reading the %cr3
register
- no need to redisable interrupts in restart() as they are already
disabled.
- unified handling of traps that push and don't push errorcode
- removed save() function as the process context is not saved directly
to process table but saved as required by the trap code. Essentially
it means that save() code is inlined everywhere not only in the
exception handling routine
- returning from syscall is more arch independent - it sets the retger
in C
- top of the x86 stack contains the current CPU id and pointer to the
currently scheduled process (the one right interrupted) so the mode
switch code can find where to save the context without need to use
proc_ptr which will be cpu local in the future and therefore
difficult to access in assembler and expensive to access in general
- some more clean up of level0 code. No need to read-back the argument
passed in
%eax from the proc structure. The mode switch code does not clobber
%the general registers and hence we can just call what is in %eax
- many assebly macros in sconst.h as they will be reused by the apic
assembly
- preemption handled in the clock timer interrupt handler, not in the clock task
- more achitecture independent clock timer handling code
- smp ready as each CPU can have its own timer
- the PIC master and slave irq handlers don't pass the irq hook pointer but just
the irq number. It gives a little bit more information to the C handler as the
irq number is not lost
- the irq code path is more achitecture independent. i386 hw interrupts are
called irq and whereever the code is arch independent enough hw_intr_
functions are called to mask/unmask interrupts
- the legacy PIC is not the only possible interrupt controller in the x86 world,
therefore the intr_(un)mask functions were renamed to signal their
functionality explicitly. APIC will add their own.
- masking and unmasking PIC interrupt lines is removed from assembler and all
the functionality is rewriten in C and moved to i8259.c
- interrupt handlers have to unmask the interrupt line if all irq handlers are
done. Assembler does not do it anymore
debugging info on panic: decode segment selectors and descriptors, now moved
to arch-specific part, prototypes added; sanity checking in debug.h made
optional with vmassert().
be used concurrently. pass the function in eax instead; this gets rid
of the global variable. also execute the function directly if we're
already trapped into the kernel.
revert of u32_t endpoint_t to int (some code assumes endpoints are
negative for negative slot numbers).
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
AMF_NOREPLY senda() flag
DETAILS
Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
running while modifying its process structure
Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
protocol message
o Detached debugger signals from general signal logic and from being
blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
are pending
o Fixed wait test for tracer, which was returning for children that were
not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG
Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
structure
o Removed T_STOP ptrace request again, as it does not help implementing
debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)
Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
#define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
revealed RS-PM-VFS race condition triangle until VFS is asynchronous
System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
signal set, rather than just the POSIX subset
Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
structure clearer
o Fixed setpriority() being able to put to sleep processes using an
invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there
Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code
THINGS OF POSSIBLE INTEREST
o It should now be possible to run PM at any priority, even lower than
user processes
o No assumptions are made about communication speed between PM and VFS,
although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
- headers use the endpoint_t in syslib.h and the implmentation was using int
instead. Both uses endpoint_t now
- every variable named like proc, proc_nr or proc_nr_e of type endpoint_t has
name proc_ep now
- endpoint_t defined as u32_t not int
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
- [ABCD]_INDEX are not used anywhere
- value of *_SELECTOR is now calculated using the *_INDEX value so changing the
index does not break the selector
- TSS is now the last of the global selectors. There will be TSS per CPU on SMP
and the number will vary depending on the maximal supported number of CPUs
configured
- a better name for architecture specific init function
- some of x86 init code must execute in protected mode
- prot_init() removed from this function and still called in cstart() Imho this
should be called from the architecture specific assembly not cstart. cstart
perform Minix monitor specific tasks and will be touched once another
bootloader is in use, e.g. booting via tftp, therefore we keep it as is for
now.
- this is a backport from the SMP code which requires this. Merging will be simpler
If an exception happens in kernel while the kernel is booting and no processes
are running yet, saved_proc == NULL and priting any process related information
results in dumping rubish.
This check is mostly useful when debugging kernel stuff. Should _never_ happen
on a production kernel.
This is a backport form the SMP branch. Not required here, it only makes life
for SMP easier. And future merging too.
- filling the IDT is removed from prot_init()
- struct gate_table_s is a public type
- gate_table_pic is a global array as it is used by APIC code too
- idt_copy_vectors() is also global and used by idt_init() as well as
apic_idt_init()
- idt_init() is called right after prot_init() in system_init()
give every process a full pagetable by default now.
first step to disabling kernel page table code (processes
might not have page tables -> no address translation).
. read_tsc() in sysutil library saves edx and eax now
. added read_tsc_64() by Antonio Mancina to load tsc into
a 64-bit data type directly
. deleted read_tsc.h in favour of a prototype in <minix/syslib.h>
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.
. kernel does not program the interrupt controller directly, do any
other architecture-dependent operations, or contain assembly any more,
but uses architecture-dependent functions in arch/$(ARCH)/.
. architecture-dependent constants and types defined in arch/$(ARCH)/include.
. <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
architecture-independent functions.
. int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
and live in arch/i386/do_* now.
. i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
If 86 support is to return, it should be a new architecture.
. prototypes for the architecture-dependent functions defined in
kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
. /etc/make.conf included in makefiles and shell scripts that need to
know the building architecture; it defines ARCH=<arch>, currently only
i386.
. some basic per-architecture build support outside of the kernel (lib)
. in clock.c, only dequeue a process if it was ready
. fixes for new include files
files deleted:
. mpx/klib.s - only for choosing between mpx/klib86 and -386
. klib86.s - only for 86
i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
. mpx386.s (entry point)
. klib386.s
. sconst.h
. exception.c
. protect.c
. protect.h
. i8269.c