- most global variables carry information which is specific to the
local CPU and each CPU must have its own copy
- cpu local variable must be declared in cpulocal.h between
DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
DECLARE_CPULOCAL macro
- to access the cpu local data the provided macros must be used
get_cpu_var(cpu, name)
get_cpu_var_ptr(cpu, name)
get_cpulocal_var(name)
get_cpulocal_var_ptr(name)
- using this macros makes future changes in the implementation
possible
- switching to ELF will make the declaration of cpu local data much
simpler, e.g.
CPULOCAL int blah;
anywhere in the kernel source code
- FPU context is stored only if conflict between 2 FPU users or while
exporting context of a process to userspace while it is the active
user of FPU
- FPU has its owner (fpu_owner) which points to the process whose
state is currently loaded in FPU
- the FPU exception is only turned on when scheduling a process which
is not the owner of FPU
- FPU state is restored for the process that generated the FPU
exception. This process runs immediately without letting scheduler
to pick a new process to resolve the FPU conflict asap, to minimize
the FPU thrashing and FPU exception hadler execution
- faster all non-FPU-exception kernel entries as FPU state is not
checked nor saved
- removed MF_USED_FPU flag, only MF_FPU_INITIALIZED remains to signal
that a process has used FPU in the past
this patch changes the way pagefaults are delivered to VM. It adopts
the same model as the out-of-quantum messages sent by kernel to a
scheduler.
- everytime a userspace pagefault occurs, kernel creates a message
which is sent to VM on behalf of the faulting process
- the process is blocked on delivery to VM in the standard IPC code
instead of waiting in a spacial in-kernel queue (stack) and is not
runnable until VM tell kernel that the pagefault is resolved and is
free to clear the RTS_PAGEFAULT flag.
- VM does not need call kernel and poll the pagefault information
which saves many (1/2?) calls and kernel calls that return "no more
data"
- VM notification by kernel does not need to use signals
- each entry in proc table is by 12 bytes smaller (~3k save)
- if an exception occurs in kernel and this exception is not handled
in an sane way and the kernel crashes, it also dumps what was loaded
in the general purpose registers exactly at the time of the
exception to help to debug the problem
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
* Userspace change to use the new kernel calls
- _taskcall(SYSTASK...) changed to _kernel_call(...)
- int 32 reused for the kernel calls
- _do_kernel_call() to make the trap to kernel
- kernel_call() to make the actuall kernel call from C using
_do_kernel_call()
- unlike ipc call the kernel call always succeeds as kernel is
always available, however, kernel may return an error
* Kernel side implementation of kernel calls
- the SYSTEm task does not run, only the proc table entry is
preserved
- every data_copy(SYSTEM is no data_copy(KERNEL
- "locking" is an empty operation now as everything runs in
kernel
- sys_task() is replaced by kernel_call() which copies the
message into kernel, dispatches the call to its handler and
finishes by either copying the results back to userspace (if
need be) or by suspending the process because of VM
- suspended processes are later made runnable once the memory
issue is resolved, picked up by the scheduler and only at
this time the call is resumed (in fact restarted) which does
not need to copy the message from userspace as the message
is already saved in the process structure.
- no ned for the vmrestart queue, the scheduler will restart
the system calls
- no special case in do_vmctl(), all requests remove the
RTS_VMREQUEST flag
- copies a mesage from/to userspace without need of translating
addresses
- the assumption is that the address space is installed, i.e. ldt and
cr3 are loaded correctly
- if a pagefault or a general protection occurs while copying from
userland to kernel (or vice versa) and error is returned which gives
the caller a chance to respond in a proper way
- error happens _only_ because of a wrong user pointer if the function
is used correctly
- if the prerequisites of the function do no hold, the function will
most likely fail as the user address becomes random
There is not that much use for it on a single CPU, however, deadlock
between kernel and system task can be delected. Or a runaway loop.
If a kernel gets locked up the timer interrupts don't occure (as all
interrupts are disabled in kernel mode). The only chance is to
interrupt the kernel by a non-maskable interrupt.
This patch generates NMIs using performance counters. It uses the most
widely available performace counters. As the performance counters are
highly model-specific this patch is not guaranteed to work on every
machine. Unfortunately this is also true for KVM :-/ On the other
hand adding this feature for other models is not extremely difficult
and the framework makes it hopefully easy enough.
Depending on the frequency of the CPU an NMI is generated at most
about every 0.5s If the cpu's speed is less then 2Ghz it is generated
at most every 1s. In general an NMI is generated much less often as
the performance counter counts down only if the cpu is not idle.
Therefore the overhead of this feature is fairly minimal even if the
load is high.
Uppon detecting that the kernel is locked up the kernel dumps the
state of the kernel registers and panics.
Local APIC must be enabled for the watchdog to work.
The code is _always_ compiled in, however, it is only enabled if
watchdog=<non-zero> is set in the boot monitor.
One corner case is serial console debugging. As dumping a lot of stuff
to the serial link may take a lot of time, the watchdog does not
detect lockups during this time!!! as it would result in too many
false positives. 10 nmi have to be handled before the lockup is
detected. This means something between ~5s to 10s.
Another corner case is that the watchdog is enabled only after the
paging is enabled as it would be pure madness to try to get it right.
- after a trap to kernel, the code automatically switches to kernel
stack, in the future local to the CPU
- k_reenter variable replaced by a test whether the CS is kernel cs or
not. The information is passed further if needed. Removes a global
variable which would need to be cpu local
- no need for global variables describing the exception or trap
context. This information is kept on stack and a pointer to this
structure is passed to the C code as a single structure
- removed loadedcr3 variable and its use replaced by reading the %cr3
register
- no need to redisable interrupts in restart() as they are already
disabled.
- unified handling of traps that push and don't push errorcode
- removed save() function as the process context is not saved directly
to process table but saved as required by the trap code. Essentially
it means that save() code is inlined everywhere not only in the
exception handling routine
- returning from syscall is more arch independent - it sets the retger
in C
- top of the x86 stack contains the current CPU id and pointer to the
currently scheduled process (the one right interrupted) so the mode
switch code can find where to save the context without need to use
proc_ptr which will be cpu local in the future and therefore
difficult to access in assembler and expensive to access in general
- some more clean up of level0 code. No need to read-back the argument
passed in
%eax from the proc structure. The mode switch code does not clobber
%the general registers and hence we can just call what is in %eax
- many assebly macros in sconst.h as they will be reused by the apic
assembly
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
AMF_NOREPLY senda() flag
DETAILS
Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
running while modifying its process structure
Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
protocol message
o Detached debugger signals from general signal logic and from being
blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
are pending
o Fixed wait test for tracer, which was returning for children that were
not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG
Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
structure
o Removed T_STOP ptrace request again, as it does not help implementing
debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)
Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
#define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
revealed RS-PM-VFS race condition triangle until VFS is asynchronous
System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
signal set, rather than just the POSIX subset
Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
structure clearer
o Fixed setpriority() being able to put to sleep processes using an
invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there
Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code
THINGS OF POSSIBLE INTEREST
o It should now be possible to run PM at any priority, even lower than
user processes
o No assumptions are made about communication speed between PM and VFS,
although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
If an exception happens in kernel while the kernel is booting and no processes
are running yet, saved_proc == NULL and priting any process related information
results in dumping rubish.
This check is mostly useful when debugging kernel stuff. Should _never_ happen
on a production kernel.
give every process a full pagetable by default now.
first step to disabling kernel page table code (processes
might not have page tables -> no address translation).
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.
. kernel does not program the interrupt controller directly, do any
other architecture-dependent operations, or contain assembly any more,
but uses architecture-dependent functions in arch/$(ARCH)/.
. architecture-dependent constants and types defined in arch/$(ARCH)/include.
. <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
architecture-independent functions.
. int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
and live in arch/i386/do_* now.
. i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
If 86 support is to return, it should be a new architecture.
. prototypes for the architecture-dependent functions defined in
kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
. /etc/make.conf included in makefiles and shell scripts that need to
know the building architecture; it defines ARCH=<arch>, currently only
i386.
. some basic per-architecture build support outside of the kernel (lib)
. in clock.c, only dequeue a process if it was ready
. fixes for new include files
files deleted:
. mpx/klib.s - only for choosing between mpx/klib86 and -386
. klib86.s - only for 86
i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
. mpx386.s (entry point)
. klib386.s
. sconst.h
. exception.c
. protect.c
. protect.h
. i8269.c