With the build system upgrade, the list of system directories was
recreated, and the sticky bit was forgotten.
Change-Id: Ie2f2241734dde9f1e217cd38588296dc21d07b81
. 'anonymous' cache blocks (retrieved with NO_DEV as dev
parameter) were used to implement read()s from holes in
inodes that should return zeroes
. this is an awkward special case in the cache code though
and there's a more direct way to implement the same functionality:
instead of copying from a new, anonymous, zero block, to
the user target buffer, simply sys_safememset the user target
buffer directly. as this was the only use of this feature,
this is all that's needed to simplify the cache code a little.
- CHOOSETRAP define makes impossible to use some common words
like send, receive and notify in any other context, for
instance as members or structures
- any reasonable compiler inlines the static inline functions so
no extra function call overhead is introduced by this change
- this gets us back to the situation before the SYSCALL/SYSENTER
change. It is not perfect, but it used to work and still does.
The 'world' target is a legacy target from the previous build system,
it is equivalent to the 'build' target in the netbsd build system.
A warning has been added to stop using it, but it still works as
expected.
Change-Id: I704a5c43d9775b6d66c15a43ba927ddb515aab80
* Remade patch so it works with minix patch tool.
* New MINIX tar support -ox, so revert back to it
In fetch scripts, tar had been replaced by bsdtar as the prebvious
tar did not support the -o flag under minix, which is required to
prevent usage of tar file stored user and group information.
This introduces portability problems. As our new tar tool now
support that flag revert back to improve portability.
upgrade to NetBSD CVS release from 2012/10/17 12:00:00 UTC
Makefiles updates to imporve portability
Made sure to be consistent in the usage of braces/parenthesis at
least on a per file basis. For variables, it is recommended to
continue to use braces.
The tested targets are the followgin ones:
* tools
* distribution
* sets
* release
The remaining NetBSD targets have not been disabled nor tested
*at all*. Try them at your own risk, they may reboot the earth.
For all compliant Makefiles, objects and generated files are put in
MAKEOBJDIR, which means you can now keep objects between two branch
switching. Same for DESTDIR, please refer to build.sh options.
Regarding new or modifications of Makefiles a few things:
* Read share/mk/bsd.README
* If you add a subdirectory, add a Makefile in it, and have it called
by the parent through the SUBDIR variable.
* Do not add arbitrary inclusion which crosses to another branch of
the hierarchy; If you can't do without it, put a comment on why.
If possible, do not use inclusion at all.
* Use as much as possible the infrastructure, it is here to make
life easier, do not fight it.
Sets and package are now used to track files.
We have one set called "minix", composed of one package called "minix-sys"
Bumping libc files for unsupported architectures, to simplify merging.
A bunch of small fixes:
* in libutil update
* the macro in endian.h
* some undefined types due to clear separation from host.
* Fix a warning for cdbr.c
Some modification which were required for the new build system:
* inclusion path for const.h in sconst, still hacky
* Removed default malloc.c which conflicts on some occasions.
The VFS/FS protocol does not require the file server to supply a
special device node number in response to a REQ_CREATE request, as
this call creates only regular files. Therefore, VFS should not
erroneously save this piece of information from the REQ_CREATE reply
either.
Upon reboot VFS semi-exits all processes and unmounts the file system.
However, upon unmount, exiting FUSE file systems might need service from
the file system (due to libc). As the FUSE process is halfway the exit
procedure, it doesn't have a valid root directory and working directory.
Trying to do system calls then triggers a sanity check in VFS.
This fix first exits normal processes which should then allow for
unmounting FUSE file systems. Then VFS exits all processes including
File Servers and unmounts the rest of the file system.
There is a deadlock vulnerability when there are no worker threads
available and all of them blocked on a worker thread that's waiting for a
reply from a driver or a reply from an FS that needs to make a back call. In
these cases the deadlock resolver thread should kick in, but didn't in all
cases. Moreover, POSIX calls from File Servers weren't handled properly
anymore, which also could lead to deadlocks.
. also make other out-of-memory conditions less fatal
. add a test case for a user program using all the memory
it can
. remove some diagnostic prints for situations that are normal
when running out of memory so running the test isn't noisy
. Check if we have the right number of boot modules
. Check if the ELF parsing of VM actually succeeded
Both these are root causes of less-than-obvious other
errors/asserts a little further down the line; uncovered
while experimenting with booting by iPXE, specifically
(a) iPXE having a 8-multiboot-modules limit and
(b) trying to boot a gzipped VM.