Currently, all servers and drivers run as root as they are forks of
RS. srv_fork now tells PM with which credentials to run the resulting
fork. Subsequently, PM lets VFS now as well.
This patch also fixes the following bugs:
- RS doesn't initialize the setugid variable during exec, causing the
servers and drivers to run setuid rendering the srv_fork extension
useless.
- PM erroneously tells VFS to run processes setuid. This doesn't
actually lead to setuid processes as VFS sets {r,e}uid and {r,e}gid
properly before checking PM's approval.
This patch separates the character and block driver communication
protocols. The old character protocol remains the same, but a new
block protocol is introduced. The libdriver library is replaced by
two new libraries: libchardriver and libblockdriver. Their exposed
API, and drivers that use them, have been updated accordingly.
Together, libbdev and libblockdriver now completely abstract away
the message format used by the block protocol. As the memory driver
is both a character and a block device driver, it now implements its
own message loop.
The most important semantic change made to the block protocol is that
it is no longer possible to return both partial results and an error
for a single transfer. This simplifies the interaction between the
caller and the driver, as the I/O vector no longer needs to be copied
back. Also, drivers are now no longer supposed to decide based on the
layout of the I/O vector when a transfer should be cut short. Put
simply, transfers are now supposed to either succeed completely, or
result in an error.
After this patch, the state of the various pieces is as follows:
- block protocol: stable
- libbdev API: stable for synchronous communication
- libblockdriver API: needs slight revision (the drvlib/partition API
in particular; the threading API will also change shortly)
- character protocol: needs cleanup
- libchardriver API: needs cleanup accordingly
- driver restarts: largely unsupported until endpoint changes are
reintroduced
As a side effect, this patch eliminates several bugs, hacks, and gcc
-Wall and -W warnings all over the place. It probably introduces a
few new ones, too.
Update warning: this patch changes the protocol between MFS and disk
drivers, so in order to use old/new images, the MFS from the ramdisk
must be used to mount all file systems.
- Remove redundant code.
- Always wait for the initial reply from an asynchronous select request,
even if the select has been satisfied on another file descriptor or
was canceled due to a serious error.
- Restart asynchronous selects if upon reply from the driver turns out
that there are deferred operations (and do not forget we're still
interested in the results of the deferred operations).
- Do not hang a non-blocking select when another blocking select on
the same filp is still blocking.
- Split blocking operations in read, write, and exceptions (i.e.,
blocking on read does not imply the write will block as well).
- Some loops would iterate over OPEN_MAX file descriptors instead of
the "highest" file descriptor.
- Use proper internal error return values.
- A secondary reply from a synchronous driver is essentially the same
as from an asynchronous driver (the only difference being how the
answer is received). Merge.
- Return proper error code after a driver failure.
- Auto-detect whether a driver is synchronous or asynchronous.
- Remove some code duplication.
- Clean up code (coding style, add missing comments, put all select
related code together).
- on driver restarts, reopen devices on a per-file basis, not per-mount
- do not assume that there is just one vnode per block-special device
- update block-special files in the uncommon mounting success paths, too
- upon mount, sync but also invalidate affected buffers on the root FS
- upon unmount, check whether a vnode is in use before updating it
VFS CHANGES:
- dmap table no longer statically initialized in VFS
- Dropped FSSIGNON svrctl call no longer used by INET
INET CHANGES:
- INET announces its presence to VFS just like any other driver
RS CHANGES:
- The boot image dev table contains all the data to initialize VFS' dmap table
- RS interface supports asynchronous up and update operations now
- RS interface extended to support driver style and flags
SYSLIB CHANGES:
- DS calls to publish / retrieve labels consider endpoints instead of u32_t.
VFS CHANGES:
- mapdriver() only adds an entry in the dmap table in VFS.
- dev_up() is only executed upon reception of a driver up event.
INET CHANGES:
- INET no longer searches for existing drivers instances at startup.
- A newtwork driver is (re)initialized upon reception of a driver up event.
- Networking startup is now race-free by design. No need to waste 5 seconds
at startup any more.
DRIVER CHANGES:
- Every driver publishes driver up events when starting for the first time or
in case of restart when recovery actions must be taken in the upper layers.
- Driver up events are published by drivers through DS.
- For regular drivers, VFS is normally the only subscriber, but not necessarily.
For instance, when the filter driver is in use, it must subscribe to driver
up events to initiate recovery.
- For network drivers, inet is the only subscriber for now.
- Every VFS driver is statically linked with libdriver, every network driver
is statically linked with libnetdriver.
DRIVER LIBRARIES CHANGES:
- Libdriver is extended to provide generic receive() and ds_publish() interfaces
for VFS drivers.
- driver_receive() is a wrapper for sef_receive() also used in driver_task()
to discard spurious messages that were meant to be delivered to a previous
version of the driver.
- driver_receive_mq() is the same as driver_receive() but integrates support
for queued messages.
- driver_announce() publishes a driver up event for VFS drivers and marks
the driver as initialized and expecting a DEV_OPEN message.
- Libnetdriver is introduced to provide similar receive() and ds_publish()
interfaces for network drivers (netdriver_announce() and netdriver_receive()).
- Network drivers all support live update with no state transfer now.
KERNEL CHANGES:
- Added kernel call statectl for state management. Used by driver_announce() to
unblock eventual callers sendrecing to the driver.
UPDATING INFO:
20100317:
/usr/src/etc/system.conf updated to ignore default kernel calls: copy
it (or merge it) to /etc/system.conf.
The hello driver (/dev/hello) added to the distribution:
# cd /usr/src/commands/scripts && make clean install
# cd /dev && MAKEDEV hello
KERNEL CHANGES:
- Generic signal handling support. The kernel no longer assumes PM as a signal
manager for every process. The signal manager of a given process can now be
specified in its privilege slot. When a signal has to be delivered, the kernel
performs the lookup and forwards the signal to the appropriate signal manager.
PM is the default signal manager for user processes, RS is the default signal
manager for system processes. To enable ptrace()ing for system processes, it
is sufficient to change the default signal manager to PM. This will temporarily
disable crash recovery, though.
- sys_exit() is now split into sys_exit() (i.e. exit() for system processes,
which generates a self-termination signal), and sys_clear() (i.e. used by PM
to ask the kernel to clear a process slot when a process exits).
- Added a new kernel call (i.e. sys_update()) to swap two process slots and
implement live update.
PM CHANGES:
- Posix signal handling is no longer allowed for system processes. System
signals are split into two fixed categories: termination and non-termination
signals. When a non-termination signaled is processed, PM transforms the signal
into an IPC message and delivers the message to the system process. When a
termination signal is processed, PM terminates the process.
- PM no longer assumes itself as the signal manager for system processes. It now
makes sure that every system signal goes through the kernel before being
actually processes. The kernel will then dispatch the signal to the appropriate
signal manager which may or may not be PM.
SYSLIB CHANGES:
- Simplified SEF init and LU callbacks.
- Added additional predefined SEF callbacks to debug crash recovery and
live update.
- Fixed a temporary ack in the SEF init protocol. SEF init reply is now
completely synchronous.
- Added SEF signal event type to provide a uniform interface for system
processes to deal with signals. A sef_cb_signal_handler() callback is
available for system processes to handle every received signal. A
sef_cb_signal_manager() callback is used by signal managers to process
system signals on behalf of the kernel.
- Fixed a few bugs with memory mapping and DS.
VM CHANGES:
- Page faults and memory requests coming from the kernel are now implemented
using signals.
- Added a new VM call to swap two process slots and implement live update.
- The call is used by RS at update time and in turn invokes the kernel call
sys_update().
RS CHANGES:
- RS has been reworked with a better functional decomposition.
- Better kernel call masks. com.h now defines the set of very basic kernel calls
every system service is allowed to use. This makes system.conf simpler and
easier to maintain. In addition, this guarantees a higher level of isolation
for system libraries that use one or more kernel calls internally (e.g. printf).
- RS is the default signal manager for system processes. By default, RS
intercepts every signal delivered to every system process. This makes crash
recovery possible before bringing PM and friends in the loop.
- RS now supports fast rollback when something goes wrong while initializing
the new version during a live update.
- Live update is now implemented by keeping the two versions side-by-side and
swapping the process slots when the old version is ready to update.
- Crash recovery is now implemented by keeping the two versions side-by-side
and cleaning up the old version only when the recovery process is complete.
DS CHANGES:
- Fixed a bug when the process doing ds_publish() or ds_delete() is not known
by DS.
- Fixed the completely broken support for strings. String publishing is now
implemented in the system library and simply wraps publishing of memory ranges.
Ideally, we should adopt a similar approach for other data types as well.
- Test suite fixed.
DRIVER CHANGES:
- The hello driver has been added to the Minix distribution to demonstrate basic
live update and crash recovery functionalities.
- Other drivers have been adapted to conform the new SEF interface.
this change
- makes panic() variadic, doing full printf() formatting -
no more NO_NUM, and no more separate printf() statements
needed to print extra info (or something in hex) before panicing
- unifies panic() - same panic() name and usage for everyone -
vm, kernel and rest have different names/syntax currently
in order to implement their own luxuries, but no longer
- throws out the 1st argument, to make source less noisy.
the panic() in syslib retrieves the server name from the kernel
so it should be clear enough who is panicing; e.g.
panic("sigaction failed: %d", errno);
looks like:
at_wini(73130): panic: sigaction failed: 0
syslib:panic.c: stacktrace: 0x74dc 0x2025 0x100a
- throws out report() - printf() is more convenient and powerful
- harmonizes/fixes the use of panic() - there were a few places
that used printf-style formatting (didn't work) and newlines
(messes up the formatting) in panic()
- throws out a few per-server panic() functions
- cleans up a tie-in of tty with panic()
merging printf() and panic() statements to be done incrementally.
- allow mounting with "none" block device
- allow unmounting by mountpoint
- make VFS aware of file system process labels
- allow m3_ca1 to use the full available message size
- use *printf in u/mount(1), as mount(2) uses it already
- fix reference leaks for some mount error cases in VFS
SYSLIB CHANGES:
- SEF framework now supports a new SEF Init request type from RS. 3 different
callbacks are available (init_fresh, init_lu, init_restart) to specify
initialization code when a service starts fresh, starts after a live update,
or restarts.
SYSTEM SERVICE CHANGES:
- Initialization code for system services is now enclosed in a callback SEF will
automatically call at init time. The return code of the callback will
tell RS whether the initialization completed successfully.
- Each init callback can access information passed by RS to initialize. As of
now, each system service has access to the public entries of RS's system process
table to gather all the information required to initialize. This design
eliminates many existing or potential races at boot time and provides a uniform
initialization interface to system services. The same interface will be reused
for the upcoming publish/subscribe model to handle dynamic
registration / deregistration of system services.
VM CHANGES:
- Uniform privilege management for all system services. Every service uses the
same call mask format. For boot services, VM copies the call mask from init
data. For dynamic services, VM still receives the call mask via rs_set_priv
call that will be soon replaced by the upcoming publish/subscribe model.
RS CHANGES:
- The system process table has been reorganized and split into private entries
and public entries. Only the latter ones are exposed to system services.
- VM call masks are now entirely configured in rs/table.c
- RS has now its own slot in the system process table. Only kernel tasks and
user processes not included in the boot image are now left out from the system
process table.
- RS implements the initialization protocol for system services.
- For services in the boot image, RS blocks till initialization is complete and
panics when failure is reported back. Services are initialized in their order of
appearance in the boot image priv table and RS blocks to implements synchronous
initialization for every system service having the flag SF_SYNCH_BOOT set.
- For services started dynamically, the initialization protocol is implemented
as though it were the first ping for the service. In this case, if the
system service fails to report back (or reports failure), RS brings the service
down rather than trying to restart it.
- clean up kernel section of minix/com.h somewhat
- remove ALLOCMEM and VM_ALLOCMEM calls
- remove non-safecopy and minix-vmd support from Inet
- remove SYS_VIRVCOPY and SYS_PHYSVCOPY calls
- remove obsolete segment encoding in SYS_SAFECOPY*
- remove DEVCTL call, svrctl(FSDEVUNMAP), map_driverX
- remove declarations of unimplemented svrctl requests
- remove everything related to swapping to disk
- remove floppysetup.sh
- remove traces of rescue device
- update DESCRIBE.sh with new devices
- some other small changes
SYSLIB CHANGES:
- SEF must be used by every system process and is thereby part of the system
library.
- The framework provides a receive() interface (sef_receive) for system
processes to automatically catch known system even messages and process them.
- SEF provides a default behavior for each type of system event, but allows
system processes to register callbacks to override the default behavior.
- Custom (local to the process) or predefined (provided by SEF) callback
implementations can be registered to SEF.
- SEF currently includes support for 2 types of system events:
1. SEF Ping. The event occurs every time RS sends a ping to figure out
whether a system process is still alive. The default callback implementation
provided by SEF is to notify RS back to let it know the process is alive
and kicking.
2. SEF Live update. The event occurs every time RS sends a prepare to update
message to let a system process know an update is available and to prepare
for it. The live update support is very basic for now. SEF only deals with
verifying if the prepare state can be supported by the process, dumping the
state for debugging purposes, and providing an event-driven programming
model to the process to react to state changes check-in when ready to update.
- SEF should be extended in the future to integrate support for more types of
system events. Ideally, all the cross-cutting concerns should be integrated into
SEF to avoid duplicating code and ease extensibility. Examples include:
* PM notify messages primarily used at shutdown.
* SYSTEM notify messages primarily used for signals.
* CLOCK notify messages used for system alarms.
* Debug messages. IS could still be in charge of fkey handling but would
forward the debug message to the target process (e.g. PM, if the user
requested debug information about PM). SEF would then catch the message and
do nothing unless the process has registered an appropriate callback to
deal with the event. This simplifies the programming model to print debug
information, avoids duplicating code, and reduces the effort to print
debug information.
SYSTEM PROCESSES CHANGES:
- Every system process registers SEF callbacks it needs to override the default
system behavior and calls sef_startup() right after being started.
- sef_startup() does almost nothing now, but will be extended in the future to
support callbacks of its own to let RS control and synchronize with every
system process at initialization time.
- Every system process calls sef_receive() now rather than receive() directly,
to let SEF handle predefined system events.
RS CHANGES:
- RS supports a basic single-component live update protocol now, as follows:
* When an update command is issued (via "service update *"), RS notifies the
target system process to prepare for a specific update state.
* If the process doesn't respond back in time, the update is aborted.
* When the process responds back, RS kills it and marks it for refreshing.
* The process is then automatically restarted as for a buggy process and can
start running again.
* Live update is currently prototyped as a controlled failure.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
- Several path lookup bugs in MFS.
- A link can be too big for the path buffer.
- A mountpoint can become inaccessible when the creation of a new inode
fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
named pipes. However, named pipes still reside on the (M)FS, as they are part
of the file system on disk. To make this work VFS now has a concept of
'mapped' inodes, which causes read, write, truncate and stat requests to be
redirected to the mapped FS, and all other requests to the original FS.
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
AMF_NOREPLY senda() flag
DETAILS
Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
running while modifying its process structure
Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
protocol message
o Detached debugger signals from general signal logic and from being
blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
are pending
o Fixed wait test for tracer, which was returning for children that were
not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG
Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
structure
o Removed T_STOP ptrace request again, as it does not help implementing
debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)
Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
#define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
revealed RS-PM-VFS race condition triangle until VFS is asynchronous
System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
signal set, rather than just the POSIX subset
Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
structure clearer
o Fixed setpriority() being able to put to sleep processes using an
invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there
Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code
THINGS OF POSSIBLE INTEREST
o It should now be possible to run PM at any priority, even lower than
user processes
o No assumptions are made about communication speed between PM and VFS,
although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
- all macros in consts.h that depend on NR_TASKS replaced by a FP_BLOCKED_ON_*
- fp_suspended removed and replaced by fp_blocked_on. Testing whether a process
is supended is qeual to testing whether fp_blocked_on is FP_BLOCKED_ON_NONE or
not
- fp_task is valid only if fp_blocked_on == FP_BLOCKED_ON_OTHER
- no need of special values that do not colide with valid and special endpoints
since they are not used as endpoints anymore
- suspend only takes FP_BLOCKED_ON_* values not endpoints anymore
- suspend(task) replaced by wait_for(task) which sets fp_task so we remember who
are we waiting for and suspend sets fp_blocked_on to FP_BLOCKED_ON_OTHER to
signal that we are waiting for some other process
- some functions should take endpoint_t instead of int, fixed
if the process was REVIVING. (susp_count doesn't count those
processes.) this together with dev_io SELECT suspend side effect
for asynch. character devices solves the hanging pipe bug. or
at last vastly improves it.
added sanity checks, turned off by default.
made the {NOT_,}{SUSPENDING,REVIVING} constants weirder to
help sanity checking.
now used for printing diagnostic messages through the kernel message
buffer. this lets processes print diagnostics without sending messages
to tty and log directly, simplifying the message protocol a lot and
reducing difficulties with deadlocks and other situations in which
diagnostics are blackholed (e.g. grants don't work). this makes
DIAGNOSTICS(_S), ASYN_DIAGNOSTICS and DIAG_REPL obsolete, although tty
and log still accept the codes for 'old' binaries. This also simplifies
diagnostics in several servers and drivers - only tty needs its own
kputc() now.
. simplifications in vfs, and some effort to get the vnode references
right (consistent) even during shutdown. m_mounted_on is now NULL
for root filesystems (!) (the original and new root), a less awkward
special case than 'm_mounted_on == m_root_node'. root now has exactly
one reference, to root, if no files are open, just like all other
filesystems. m_driver_e is unused.
bugfixes:
SYSTEM:
. removed
rc->p_priv->s_flags = 0;
for the priv struct shared by all user processes in get_priv(). this
should only be done once. doing a SYS_PRIV_USER in sys_privctl()
caused the flags of all user processes to be reset, so they were no
longer PREEMPTIBLE. this happened when RS executed a policy script.
(this broke test1 in the test set)
VFS/MFS:
. chown can change the mode of a file, and chmod arguments are only
part of the full file mode so the full filemode is slightly magic.
changed these calls so that the final modes are returned to VFS, so
that the vnode can be kept up-to-date.
(this broke test11 in the test set)
MFS:
. lookup() checked for sizeof(string) instead of sizeof(user_path),
truncating long path names
(caught by test 23)
. truncate functions neglected to update ctime
(this broke test16)
VFS:
. corner case of an empty filename lookup caused fields of a request
not to be filled in in the lookup functions, not making it clear
that the lookup had failed, causing messages to garbage processes,
causing strange failures.
(caught by test 30)
. trust v_size in vnode when doing reads or writes on non-special
files, truncating i/o where necessary; this is necessary for pipes,
as MFS can't tell when a pipe has been truncated without it being
told explicitly each time.
when the last reader/writer on a pipe closes, tell FS about
the new size using truncate_vn().
(this broke test 25, among others)
. permission check for chdir() had disappeared; added a
forbidden() call
(caught by test 23)
new code, shouldn't change anything:
. introduced RTS_SET, RTS_UNSET, and RTS_ISSET macro's, and their
LOCK variants. These macros set and clear the p_rts_flags field,
causing a lot of duplicated logic like
old_flags = rp->p_rts_flags; /* save value of the flags */
rp->p_rts_flags &= ~NO_PRIV;
if (old_flags != 0 && rp->p_rts_flags == 0) lock_enqueue(rp);
to change into the simpler
RTS_LOCK_UNSET(rp, NO_PRIV);
so the macros take care of calling dequeue() and enqueue() (or lock_*()),
as the case may be). This makes the code a bit more readable and a
bit less fragile.
. removed return code from do_clocktick in CLOCK as it currently
never replies
. removed some debug code from VFS
. fixed grant debug message in device.c
preemptive checks, tests, changes:
. added return code checks of receive() to SYSTEM and CLOCK
. O_TRUNC should never arrive at MFS (added sanity check and removed
O_TRUNC code)
. user_path declared with PATH_MAX+1 to let it be null-terminated
. checks in MFS to see if strings passed by VFS are null-terminated
IS:
. static irq name table thrown out
. corrected device match for unmount (otherwise unmount would
proceed with bogus mount slot, often sending messages to 0 (PM))
. added some sanity checking to fs process number
. made fs_sendrec PRIVATE to request.c