minix/etc/system.conf

711 lines
11 KiB
Text
Raw Normal View History

#
# Boot system services in the boot image
#
service rs
{
uid 0;
ipc ALL; # ALL ipc targets allowed
system ALL; # ALL kernel calls allowed
vm # Extra VM calls allowed:
RS_SET_PRIV # 37
RS_UPDATE # 41
RS_MEMCTL # 42
PROCCTL
;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr SELF; # Signal manager is SELF
scheduler KERNEL; # Scheduler is KERNEL
priority 4; # priority queue 4
quantum 500; # default server quantum
};
service ds
{
uid 0;
ipc ALL_SYS; # All system ipc targets allowed
system ALL; # ALL kernel calls allowed
vm BASIC; # Only basic VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 4; # priority queue 4
quantum 500; # default server quantum
};
service vm
{
uid 0;
ipc ALL; # ALL ipc targets allowed
system ALL; # ALL kernel calls allowed
vm NONE; # No VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 2; # priority queue 2
quantum 500; # default server quantum
};
service pm
{
uid 0;
ipc ALL; # ALL ipc targets allowed
system ALL; # ALL kernel calls allowed
vm # Extra VM calls allowed:
EXIT # 00
FORK # 01
BRK # 02
EXEC_NEWMEM # 03
WILLEXIT # 05
NOTIFY_SIG # 39
;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 4; # priority queue 4
quantum 500; # default server quantum
};
service sched
{
uid 0;
ipc ALL_SYS; # All system ipc targets allowed
system ALL; # ALL kernel calls allowed
vm BASIC; # Only basic VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 4; # priority queue 4
quantum 500; # default server quantum
};
service vfs
{
uid 0;
ipc ALL; # ALL ipc targets allowed
system # Extra kernel calls allowed:
KILL # 06
UMAP # 14
VIRCOPY # 15
MEMSET
;
vm PROCCTL
VFS_MMAP
VFS_REPLY
;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 5; # priority queue 5
quantum 500; # default server quantum
};
service mfs
{
ipc ALL_SYS; # All system ipc targets allowed
system BASIC; # Only basic kernel calls allowed
vm MAPCACHEPAGE SETCACHEPAGE CLEARCACHE;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler sched; # Scheduler is sched
priority 5; # priority queue 5
quantum 500; # default server quantum
};
2011-08-22 12:10:03 +02:00
service ntfs-3g
{
uid SELF; # Use uid of user starting service
2011-08-22 12:10:03 +02:00
ipc ALL_SYS; # All system ipc targets allowed
system BASIC; # Only basic kernel calls allowed
vm BASIC; # Only basic VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler sched; # Scheduler is sched
priority 5; # priority queue 5
quantum 500; # default server quantum
};
service ext2
{
ipc ALL_SYS; # All system ipc targets allowed
system BASIC; # Only basic kernel calls allowed
vm MAPCACHEPAGE SETCACHEPAGE CLEARCACHE;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler sched; # Scheduler is sched
priority 5; # priority queue 5
quantum 500; # default server quantum
};
service pfs
{
ipc ALL_SYS; # All system ipc targets allowed
system BASIC; # Only basic kernel calls allowed
vm MAPCACHEPAGE SETCACHEPAGE CLEARCACHE;
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler sched; # Scheduler is sched
priority 5; # priority queue 5
quantum 500; # default server quantum
};
service tty
{
uid 0;
ipc ALL_SYS; # All system ipc targets allowed
system # Extra kernel calls allowed:
KILL # 06
UMAP # 14
VIRCOPY # 15
PHYSCOPY # 16
IRQCTL # 19
INT86 # 20
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
ABORT # 27
IOPENABLE # 28
READBIOS # 35
;
vm BASIC; # Only basic VM calls allowed
io ALL; # ALL I/O ranges allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
Input infrastructure, INPUT server, PCKBD driver This commit separates the low-level keyboard driver from TTY, putting it in a separate driver (PCKBD). The commit also separates management of raw input devices from TTY, and puts it in a separate server (INPUT). All keyboard and mouse input from hardware is sent by drivers to the INPUT server, which either sends it to a process that has opened a raw input device, or otherwise forwards it to TTY for standard processing. Design by Dirk Vogt. Prototype by Uli Kastlunger. Additional changes made to the prototype: - the event communication is now based on USB HID codes; all input drivers have to use USB codes to describe events; - all TTY keymaps have been converted to USB format, with the effect that a single keymap covers all keys; there is no (static) escaped keymap anymore; - further keymap tweaks now allow remapping of literally all keys; - input device renumbering and protocol rewrite; - INPUT server rewrite, with added support for cancel and select; - PCKBD reimplementation, including PC/AT-to-USB translation; - support for manipulating keyboard LEDs has been added; - keyboard and mouse multiplexer devices have been added to INPUT, primarily so that an X server need only open two devices; - a new "libinputdriver" library abstracts away protocol details from input drivers, and should be used by all future input drivers; - both INPUT and PCKBD can be restarted; - TTY is now scheduled by KERNEL, so that it won't be punished for running a lot; without this, simply running "yes" on the console kills the system; - the KIOCBELL IOCTL has been moved to /dev/console; - support for the SCANCODES termios setting has been removed; - obsolete keymap compression has been removed; - the obsolete Olivetti M24 keymap has been removed. Change-Id: I3a672fb8c4fd566734e4b46d3994b4b7fc96d578
2013-09-28 14:46:21 +02:00
scheduler KERNEL; # Scheduler is KERNEL (prevents console stalls)
priority 1; # priority queue 1
quantum 50; # default driver quantum
};
service memory
{
uid 0;
ipc ALL_SYS; # All system ipc targets allowed
system # Extra kernel calls allowed:
UMAP # 14
VIRCOPY # 15
PHYSCOPY # 16
IRQCTL # 19
INT86 # 20
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
IOPENABLE # 28
;
vm BASIC; # Only basic VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQ allowed
sigmgr rs; # Signal manager is RS
scheduler KERNEL; # Scheduler is KERNEL
priority 3; # priority queue 3
quantum 50; # default driver quantum
};
service log
{
ipc SYSTEM vfs rs vm;
priority 2;
};
service init
{
uid 0;
ipc # ipc targets allowed:
pm vfs rs vm
;
system NONE; # No kernel calls allowed
vm BASIC; # Only basic VM calls allowed
io NONE; # No I/O range allowed
irq NONE; # No IRQs allowed
sigmgr pm; # Signal manager is PM
};
#
# Dynamically started system services
#
service floppy
{
irq 6;
io 3f0:8
0:10 # DMA controller
81 # Also DMA
;
system
UMAP # 14
IRQCTL # 19
DEVIO # 21
VDEVIO # 23
;
};
service dp8390
{
system
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
;
pci device 10ec:8029;
uid 0;
};
service dpeth
{
system
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
;
uid 0;
};
service inet
{
uid 0;
};
service lwip
{
uid 0;
};
service random
{
};
service readclock.drv
{
ipc ALL;
io 70:2;
system
PRIVCTL # 4
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
UMAP # 14
VIRCOPY # 15
DEVIO # 21
READBIOS # 35
;
uid 0;
};
service is
{
vm
2010-01-19 22:00:20 +01:00
INFO
;
uid 0;
};
service acpi
{
io ALL;
system
PRIVCTL # 4
DEVIO # 21
;
uid 0;
};
service pci
{
io cf8:8 # PCI bus controller
4d0:2 # PIIX
;
system
PRIVCTL # 4
DEVIO # 21
;
uid 0;
};
2010-08-05 18:37:58 +02:00
service ahci
{
system
UMAP # 14
VUMAP # 18
2010-08-05 18:37:58 +02:00
IRQCTL # 19
;
pci class
1/6/1 # Mass storage / SATA / AHCI
;
};
2012-12-15 13:54:11 +01:00
service virtio_blk
{
system
UMAP
VUMAP
IRQCTL
DEVIO
;
pci device 1af4:1001;
2012-12-15 13:54:11 +01:00
};
service at_wini
{
io 1f0:8 # Controller 0
3f6 # Also controller 0
2006-11-01 15:55:00 +01:00
170:8 # Controller 1
376 # Also controller 1
;
irq
14 # Controller 0
2006-11-01 15:55:00 +01:00
15 # Controller 1
;
system
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
VDEVIO # 23
;
pci class # Match these PCI classes:
1/1 # Mass storage / IDE
;
pci device # In addition, match these devices:
1106:3149 # VIA VT6420 RAID (1/4)
1095:3512/1095:6512 # Silicon Image SATA RAID (1/4)
1095:3114/1095:3114 # Silicon Image SATA RAID (1/80)
2006-11-01 15:55:00 +01:00
;
};
service procfs
{
system
VIRCOPY # 15
;
vm
INFO
;
uid 0;
};
service isofs
2009-10-01 16:34:17 +02:00
{
system
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
UMAP # 14
2009-10-01 16:34:17 +02:00
;
uid 0;
};
service hgfs
{
ipc
SYSTEM pm vfs rs vm
;
};
service vbfs
{
ipc
2012-12-06 14:27:26 +01:00
SYSTEM pm vfs rs ds vm vbox
;
};
service printer
2007-05-30 17:40:12 +02:00
{
io 378:4 # LPT1
278:4 # LPT2
2007-05-30 17:40:12 +02:00
;
irq
7 # PRINTER_IRQ
;
system
KILL # 6
UMAP # 14
IRQCTL # 19
DEVIO # 21
VDEVIO # 23
READBIOS # 35
2007-05-30 17:40:12 +02:00
;
};
service orinoco
{
system
PRIVCTL # 4
UMAP # 14
IRQCTL # 19
DEVIO # 21
VM_MAP # 30
;
pci device 1260:3873;
pci device 1186:1300;
uid 0;
};
service es1370
{
system
UMAP # 14
IRQCTL # 19
DEVIO # 21
;
pci device 1274:5000;
};
service es1371
{
system
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
UMAP # 14
IRQCTL # 19
DEVIO # 21
;
pci device 1274:1371;
};
service ti1225
{
system
IRQCTL # 19
;
pci device 104c:ac1c;
};
service amddev
{
pci device 1022:1103;
system
UMAP_REMOTE # 17
;
vm
ADDDMA # 12
DELDMA # 13
GETDMA # 14
;
uid 0;
};
service osscore
2009-10-01 18:36:14 +02:00
{
system
PRIVCTL # 4
UMAP # 14
IRQCTL # 19
DEVIO # 21
SDEVIO # 22
;
pci class
4/1 # Multimedia / Audio device
;
ipc
SYSTEM pm rs tty ds vfs vm
pci inet lwip amddev
2009-10-01 18:36:14 +02:00
;
uid 0;
};
2009-12-02 11:08:58 +01:00
service filter
2009-12-02 11:08:58 +01:00
{
ipc
SYSTEM pm vfs rs ds vm
2009-12-02 11:08:58 +01:00
at_wini
;
control
at_wini
;
};
Input infrastructure, INPUT server, PCKBD driver This commit separates the low-level keyboard driver from TTY, putting it in a separate driver (PCKBD). The commit also separates management of raw input devices from TTY, and puts it in a separate server (INPUT). All keyboard and mouse input from hardware is sent by drivers to the INPUT server, which either sends it to a process that has opened a raw input device, or otherwise forwards it to TTY for standard processing. Design by Dirk Vogt. Prototype by Uli Kastlunger. Additional changes made to the prototype: - the event communication is now based on USB HID codes; all input drivers have to use USB codes to describe events; - all TTY keymaps have been converted to USB format, with the effect that a single keymap covers all keys; there is no (static) escaped keymap anymore; - further keymap tweaks now allow remapping of literally all keys; - input device renumbering and protocol rewrite; - INPUT server rewrite, with added support for cancel and select; - PCKBD reimplementation, including PC/AT-to-USB translation; - support for manipulating keyboard LEDs has been added; - keyboard and mouse multiplexer devices have been added to INPUT, primarily so that an X server need only open two devices; - a new "libinputdriver" library abstracts away protocol details from input drivers, and should be used by all future input drivers; - both INPUT and PCKBD can be restarted; - TTY is now scheduled by KERNEL, so that it won't be punished for running a lot; without this, simply running "yes" on the console kills the system; - the KIOCBELL IOCTL has been moved to /dev/console; - support for the SCANCODES termios setting has been removed; - obsolete keymap compression has been removed; - the obsolete Olivetti M24 keymap has been removed. Change-Id: I3a672fb8c4fd566734e4b46d3994b4b7fc96d578
2013-09-28 14:46:21 +02:00
service input
{
ipc SYSTEM pm vfs rs ds tty vm;
priority 1;
};
service pckbd
{
system
IRQCTL # 19
DEVIO # 21
;
io 60:8; # Keyboard, keyboard command/status
irq
1 # Keyboard
12 # Auxiliary input (mouse)
;
ipc SYSTEM pm rs ds vm input;
priority 1;
};
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
service hello
{
system
IRQCTL # 19
DEVIO # 21
;
ipc
SYSTEM pm rs tty ds vm vfs
pci inet lwip amddev
New RS and new signal handling for system processes. UPDATING INFO: 20100317: /usr/src/etc/system.conf updated to ignore default kernel calls: copy it (or merge it) to /etc/system.conf. The hello driver (/dev/hello) added to the distribution: # cd /usr/src/commands/scripts && make clean install # cd /dev && MAKEDEV hello KERNEL CHANGES: - Generic signal handling support. The kernel no longer assumes PM as a signal manager for every process. The signal manager of a given process can now be specified in its privilege slot. When a signal has to be delivered, the kernel performs the lookup and forwards the signal to the appropriate signal manager. PM is the default signal manager for user processes, RS is the default signal manager for system processes. To enable ptrace()ing for system processes, it is sufficient to change the default signal manager to PM. This will temporarily disable crash recovery, though. - sys_exit() is now split into sys_exit() (i.e. exit() for system processes, which generates a self-termination signal), and sys_clear() (i.e. used by PM to ask the kernel to clear a process slot when a process exits). - Added a new kernel call (i.e. sys_update()) to swap two process slots and implement live update. PM CHANGES: - Posix signal handling is no longer allowed for system processes. System signals are split into two fixed categories: termination and non-termination signals. When a non-termination signaled is processed, PM transforms the signal into an IPC message and delivers the message to the system process. When a termination signal is processed, PM terminates the process. - PM no longer assumes itself as the signal manager for system processes. It now makes sure that every system signal goes through the kernel before being actually processes. The kernel will then dispatch the signal to the appropriate signal manager which may or may not be PM. SYSLIB CHANGES: - Simplified SEF init and LU callbacks. - Added additional predefined SEF callbacks to debug crash recovery and live update. - Fixed a temporary ack in the SEF init protocol. SEF init reply is now completely synchronous. - Added SEF signal event type to provide a uniform interface for system processes to deal with signals. A sef_cb_signal_handler() callback is available for system processes to handle every received signal. A sef_cb_signal_manager() callback is used by signal managers to process system signals on behalf of the kernel. - Fixed a few bugs with memory mapping and DS. VM CHANGES: - Page faults and memory requests coming from the kernel are now implemented using signals. - Added a new VM call to swap two process slots and implement live update. - The call is used by RS at update time and in turn invokes the kernel call sys_update(). RS CHANGES: - RS has been reworked with a better functional decomposition. - Better kernel call masks. com.h now defines the set of very basic kernel calls every system service is allowed to use. This makes system.conf simpler and easier to maintain. In addition, this guarantees a higher level of isolation for system libraries that use one or more kernel calls internally (e.g. printf). - RS is the default signal manager for system processes. By default, RS intercepts every signal delivered to every system process. This makes crash recovery possible before bringing PM and friends in the loop. - RS now supports fast rollback when something goes wrong while initializing the new version during a live update. - Live update is now implemented by keeping the two versions side-by-side and swapping the process slots when the old version is ready to update. - Crash recovery is now implemented by keeping the two versions side-by-side and cleaning up the old version only when the recovery process is complete. DS CHANGES: - Fixed a bug when the process doing ds_publish() or ds_delete() is not known by DS. - Fixed the completely broken support for strings. String publishing is now implemented in the system library and simply wraps publishing of memory ranges. Ideally, we should adopt a similar approach for other data types as well. - Test suite fixed. DRIVER CHANGES: - The hello driver has been added to the Minix distribution to demonstrate basic live update and crash recovery functionalities. - Other drivers have been adapted to conform the new SEF interface.
2010-03-17 02:15:29 +01:00
;
uid 0;
};
2011-02-23 15:50:31 +01:00
service devman
{
uid 0;
};
service mmc
{
system
PRIVCTL # 4
IRQCTL # 19
;
# Interrupts allowed
irq
64
83
; # IRQs allowed
priority 4; # priority queue 4
};
service fb
{
system
UMAP # 14
DEVIO # 21
PRIVCTL # 4
;
ipc
SYSTEM pm rs ds vm vfs cat24c256 tda19988
;
};
service gpio
{
system
PRIVCTL # 4
IRQCTL # 19
PADCONF # 57
;
irq
29 # GPIO module 1 (dm37xx)
30 # GPIO module 2 (dm37xx)
31 # GPIO module 3 (dm37xx)
32 # GPIO module 4 (dm37xx) / module 2a (am335x)
33 # GPIO module 5 (dm37xx) / module 2b (am335x)
34 # GPIO module 6 (dm37xx)
62 # GPIO module 3a (am335x)
63 # GPIO module 3b (am335x)
96 # GPIO module 0a (am335x)
97 # GPIO module 0b (am335x)
98 # GPIO module 1a (am335x)
99 # GPIO module 1b (am335x)
;
};
service i2c
{
system
PRIVCTL # 4
IRQCTL # 19
PADCONF # 57
;
irq
# DM37XX (BeagleBoard-xM)
56 # I2C module 1
57 # I2C module 2
61 # I2C module 3
# AM335X (BeagleBone)
70 # I2C module 1
71 # I2C module 2
30 # I2C module 3
;
ipc SYSTEM RS DS;
};
service cat24c256
{
ipc SYSTEM RS DS i2c;
};
service tda19988
{
ipc SYSTEM RS DS i2c;
};
service tps65217
{
uid 0; # needed for doing reboot(RBT_POWEROFF)
system IRQCTL PRIVCTL;
irq 7; # NNMI pin on BeagleBone / BeagleBone Black
ipc SYSTEM RS DS PM i2c;
};
service tps65950
{
ipc SYSTEM RS DS i2c readclock.drv;
};
service tsl2550
{
ipc SYSTEM RS DS i2c;
};
service sht21
{
ipc SYSTEM RS DS i2c;
};
service bmp085
{
ipc SYSTEM RS DS i2c;
};
service vbox
{
system
UMAP # 14
VUMAP # 18
IRQCTL # 19
DEVIO # 21
;
pci device 80ee:cafe;
ipc
SYSTEM
PM
RS
VM
pci
;
uid 0;
};
service fbd
{
ipc
SYSTEM vfs rs ds vm
ahci
at_wini
;
};
service vnd
{
ipc
SYSTEM vfs rs vm
;
uid 0; # only for copyfd(2)
};
service uds
{
ipc
SYSTEM vfs rs vm
;
uid 0; # only for checkperms(2) and copyfd(2)
};