minix/servers/vm/main.c

404 lines
11 KiB
C
Raw Normal View History

#define _SYSTEM 1
#define VERBOSE 0
#include <minix/callnr.h>
#include <minix/com.h>
#include <minix/config.h>
#include <minix/const.h>
#include <minix/ds.h>
#include <minix/endpoint.h>
#include <minix/keymap.h>
#include <minix/minlib.h>
#include <minix/type.h>
#include <minix/ipc.h>
#include <minix/sysutil.h>
#include <minix/syslib.h>
#include <minix/const.h>
#include <minix/bitmap.h>
#include <minix/crtso.h>
#include <errno.h>
#include <string.h>
#include <env.h>
#include <stdio.h>
#include <memory.h>
#define _MAIN 1
#include "glo.h"
#include "proto.h"
#include "util.h"
#include "vm.h"
#include "sanitycheck.h"
extern int missing_spares;
#include <archtypes.h>
#include "../../kernel/const.h"
#include "../../kernel/config.h"
#include "../../kernel/proc.h"
typedef u32_t mask_t;
#define MINEPM 0
#define MAXMASK (sizeof(mask_t)*8)
#define ANYEPM (MINEPM+MAXMASK-1)
#define NEEDACL (MINEPM+MAXMASK-2)
#define MAXEPM (NEEDACL-1)
#define EPM(e) ((1L) << ((e)-MINEPM))
#define EPMOK(mask, ep) (((mask) & EPM(ANYEPM)) || ((ep) >= MINEPM && (ep) <= MAXEPM && (EPM(ep) & (mask))))
/* Table of calls and a macro to test for being in range. */
struct {
mask_t vmc_callers; /* bitmap of endpoint numbers */
int (*vmc_func)(message *); /* Call handles message. */
char *vmc_name; /* Human-readable string. */
} vm_calls[VM_NCALLS];
/* Macro to verify call range and map 'high' range to 'base' range
* (starting at 0) in one. Evaluates to zero-based call number if call
* number is valid, returns -1 otherwise.
*/
#define CALLNUMBER(c) (((c) >= VM_RQ_BASE && \
(c) < VM_RQ_BASE + ELEMENTS(vm_calls)) ? \
((c) - VM_RQ_BASE) : -1)
FORWARD _PROTOTYPE(void vm_init, (void));
FORWARD _PROTOTYPE(int vm_acl_ok, (endpoint_t caller, int call));
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF functions and variables. */
FORWARD _PROTOTYPE( void sef_local_startup, (void) );
/*===========================================================================*
* main *
*===========================================================================*/
PUBLIC int main(void)
{
message msg;
int result, who_e;
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/* SEF local startup. */
sef_local_startup();
#if SANITYCHECKS
incheck = nocheck = 0;
FIXME("VM SANITYCHECKS are on");
#endif
2008-11-19 14:19:37 +01:00
vm_paged = 1;
env_parse("vm_paged", "d", 0, &vm_paged, 0, 1);
#if SANITYCHECKS
env_parse("vm_sanitychecklevel", "d", 0, &vm_sanitychecklevel, 0, SCL_MAX);
#endif
vm_init();
/* This is VM's main loop. */
while (TRUE) {
int r, c;
SANITYCHECK(SCL_TOP);
if(missing_spares > 0) {
pt_cycle(); /* pagetable code wants to be called */
}
SANITYCHECK(SCL_DETAIL);
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
if ((r=sef_receive(ANY, &msg)) != OK)
vm_panic("sef_receive() error", r);
SANITYCHECK(SCL_DETAIL);
if(msg.m_type & NOTIFY_MESSAGE) {
switch(msg.m_source) {
case SYSTEM:
/* Kernel wants to have memory ranges
* verified, and/or pagefaults handled.
*/
do_memory();
break;
case HARDWARE:
do_pagefaults();
break;
case PM_PROC_NR:
/* PM sends a notify() on shutdown, which
* is OK and we ignore.
*/
break;
default:
/* No-one else should send us notifies. */
printf("VM: ignoring notify() from %d\n",
msg.m_source);
break;
}
continue;
}
who_e = msg.m_source;
c = CALLNUMBER(msg.m_type);
result = ENOSYS; /* Out of range or restricted calls return this. */
if(c < 0 || !vm_calls[c].vmc_func) {
printf("VM: out of range or missing callnr %d from %d\n",
msg.m_type, who_e);
} else if (vm_acl_ok(who_e, c) != OK) {
printf("VM: unauthorized %s by %d\n",
vm_calls[c].vmc_name, who_e);
} else {
SANITYCHECK(SCL_FUNCTIONS);
result = vm_calls[c].vmc_func(&msg);
SANITYCHECK(SCL_FUNCTIONS);
}
/* Send reply message, unless the return code is SUSPEND,
* which is a pseudo-result suppressing the reply message.
*/
if(result != SUSPEND) {
SANITYCHECK(SCL_DETAIL);
msg.m_type = result;
if((r=send(who_e, &msg)) != OK) {
printf("VM: couldn't send %d to %d (err %d)\n",
msg.m_type, who_e, r);
vm_panic("send() error", NO_NUM);
}
SANITYCHECK(SCL_DETAIL);
}
SANITYCHECK(SCL_DETAIL);
}
return(OK);
}
Basic System Event Framework (SEF) with ping and live update. SYSLIB CHANGES: - SEF must be used by every system process and is thereby part of the system library. - The framework provides a receive() interface (sef_receive) for system processes to automatically catch known system even messages and process them. - SEF provides a default behavior for each type of system event, but allows system processes to register callbacks to override the default behavior. - Custom (local to the process) or predefined (provided by SEF) callback implementations can be registered to SEF. - SEF currently includes support for 2 types of system events: 1. SEF Ping. The event occurs every time RS sends a ping to figure out whether a system process is still alive. The default callback implementation provided by SEF is to notify RS back to let it know the process is alive and kicking. 2. SEF Live update. The event occurs every time RS sends a prepare to update message to let a system process know an update is available and to prepare for it. The live update support is very basic for now. SEF only deals with verifying if the prepare state can be supported by the process, dumping the state for debugging purposes, and providing an event-driven programming model to the process to react to state changes check-in when ready to update. - SEF should be extended in the future to integrate support for more types of system events. Ideally, all the cross-cutting concerns should be integrated into SEF to avoid duplicating code and ease extensibility. Examples include: * PM notify messages primarily used at shutdown. * SYSTEM notify messages primarily used for signals. * CLOCK notify messages used for system alarms. * Debug messages. IS could still be in charge of fkey handling but would forward the debug message to the target process (e.g. PM, if the user requested debug information about PM). SEF would then catch the message and do nothing unless the process has registered an appropriate callback to deal with the event. This simplifies the programming model to print debug information, avoids duplicating code, and reduces the effort to print debug information. SYSTEM PROCESSES CHANGES: - Every system process registers SEF callbacks it needs to override the default system behavior and calls sef_startup() right after being started. - sef_startup() does almost nothing now, but will be extended in the future to support callbacks of its own to let RS control and synchronize with every system process at initialization time. - Every system process calls sef_receive() now rather than receive() directly, to let SEF handle predefined system events. RS CHANGES: - RS supports a basic single-component live update protocol now, as follows: * When an update command is issued (via "service update *"), RS notifies the target system process to prepare for a specific update state. * If the process doesn't respond back in time, the update is aborted. * When the process responds back, RS kills it and marks it for refreshing. * The process is then automatically restarted as for a buggy process and can start running again. * Live update is currently prototyped as a controlled failure.
2009-12-21 15:12:21 +01:00
/*===========================================================================*
* sef_local_startup *
*===========================================================================*/
PRIVATE void sef_local_startup()
{
/* No live update support for now. */
/* Let SEF perform startup. */
sef_startup();
}
extern int unmap_ok;
/*===========================================================================*
* vm_init *
*===========================================================================*/
PRIVATE void vm_init(void)
{
int s, i;
int click, clicksforgotten = 0;
struct memory mem_chunks[NR_MEMS];
struct boot_image image[NR_BOOT_PROCS];
struct boot_image *ip;
phys_bytes limit = 0;
/* Get chunks of available memory. */
get_mem_chunks(mem_chunks);
/* Initialize VM's process table. Request a copy of the system
* image table that is defined at the kernel level to see which
* slots to fill in.
*/
if (OK != (s=sys_getimage(image)))
vm_panic("couldn't get image table: %d\n", s);
/* Set table to 0. This invalidates all slots (clear VMF_INUSE). */
memset(vmproc, 0, sizeof(vmproc));
for(i = 0; i < ELEMENTS(vmproc); i++) {
vmproc[i].vm_slot = i;
}
/* Walk through boot-time system processes that are alive
* now and make valid slot entries for them.
*/
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
phys_bytes proclimit;
struct vmproc *vmp;
if(ip->proc_nr >= _NR_PROCS) { vm_panic("proc", ip->proc_nr); }
if(ip->proc_nr < 0 && ip->proc_nr != SYSTEM) continue;
#define GETVMP(v, nr) \
if(nr >= 0) { \
vmp = &vmproc[ip->proc_nr]; \
} else if(nr == SYSTEM) { \
vmp = &vmproc[VMP_SYSTEM]; \
} else { \
vm_panic("init: crazy proc_nr", nr); \
}
/* Initialize normal process table slot or special SYSTEM
* table slot. Kernel memory is already reserved.
*/
GETVMP(vmp, ip->proc_nr);
/* reset fields as if exited */
clear_proc(vmp);
/* Get memory map for this process from the kernel. */
if ((s=get_mem_map(ip->proc_nr, vmp->vm_arch.vm_seg)) != OK)
vm_panic("couldn't get process mem_map",s);
/* Remove this memory from the free list. */
reserve_proc_mem(mem_chunks, vmp->vm_arch.vm_seg);
/* Set memory limit. */
proclimit = CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_phys +
vmp->vm_arch.vm_seg[S].mem_len) - 1;
if(proclimit > limit)
limit = proclimit;
vmp->vm_flags = VMF_INUSE;
vmp->vm_endpoint = ip->endpoint;
vmp->vm_stacktop =
CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_vir +
vmp->vm_arch.vm_seg[S].mem_len);
if (vmp->vm_arch.vm_seg[T].mem_len != 0)
vmp->vm_flags |= VMF_SEPARATE;
}
/* Architecture-dependent initialization. */
pt_init(limit);
/* Initialize tables to all physical memory. */
mem_init(mem_chunks);
meminit_done = 1;
/* Give these processes their own page table. */
for (ip = &image[0]; ip < &image[NR_BOOT_PROCS]; ip++) {
int s;
struct vmproc *vmp;
vir_bytes old_stacktop, old_stack;
if(ip->proc_nr < 0) continue;
GETVMP(vmp, ip->proc_nr);
if(!(ip->flags & PROC_FULLVM))
continue;
old_stack =
vmp->vm_arch.vm_seg[S].mem_vir +
vmp->vm_arch.vm_seg[S].mem_len -
vmp->vm_arch.vm_seg[D].mem_len;
if(pt_new(&vmp->vm_pt) != OK)
vm_panic("vm_init: no new pagetable", NO_NUM);
#define BASICSTACK VM_PAGE_SIZE
old_stacktop = CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_vir +
vmp->vm_arch.vm_seg[S].mem_len);
if(sys_vmctl(vmp->vm_endpoint, VMCTL_INCSP,
VM_STACKTOP - old_stacktop) != OK) {
vm_panic("VM: vmctl for new stack failed", NO_NUM);
}
FREE_MEM(vmp->vm_arch.vm_seg[D].mem_phys +
vmp->vm_arch.vm_seg[D].mem_len,
old_stack);
if(proc_new(vmp,
VM_PROCSTART,
CLICK2ABS(vmp->vm_arch.vm_seg[T].mem_len),
CLICK2ABS(vmp->vm_arch.vm_seg[D].mem_len),
BASICSTACK,
CLICK2ABS(vmp->vm_arch.vm_seg[S].mem_vir +
vmp->vm_arch.vm_seg[S].mem_len -
vmp->vm_arch.vm_seg[D].mem_len) - BASICSTACK,
CLICK2ABS(vmp->vm_arch.vm_seg[T].mem_phys),
CLICK2ABS(vmp->vm_arch.vm_seg[D].mem_phys),
VM_STACKTOP) != OK) {
vm_panic("failed proc_new for boot process", NO_NUM);
}
}
/* Set up table of calls. */
#define CALLMAP(code, func, thecaller) { int i; \
if((i=CALLNUMBER(code)) < 0) { vm_panic(#code " invalid", (code)); } \
if(i >= VM_NCALLS) { vm_panic(#code " invalid", (code)); } \
vm_calls[i].vmc_func = (func); \
vm_calls[i].vmc_name = #code; \
if(((thecaller) < MINEPM || (thecaller) > MAXEPM) \
&& (thecaller) != ANYEPM \
&& (thecaller) != NEEDACL ) { \
vm_panic(#thecaller " invalid", (code)); \
} \
vm_calls[i].vmc_callers |= EPM(thecaller); \
}
/* Set call table to 0. This invalidates all calls (clear
* vmc_func).
*/
memset(vm_calls, 0, sizeof(vm_calls));
/* Requests from PM (restricted to be from PM only). */
CALLMAP(VM_EXIT, do_exit, PM_PROC_NR);
CALLMAP(VM_FORK, do_fork, PM_PROC_NR);
CALLMAP(VM_BRK, do_brk, PM_PROC_NR);
CALLMAP(VM_EXEC_NEWMEM, do_exec_newmem, PM_PROC_NR);
CALLMAP(VM_PUSH_SIG, do_push_sig, PM_PROC_NR);
CALLMAP(VM_WILLEXIT, do_willexit, PM_PROC_NR);
CALLMAP(VM_ADDDMA, do_adddma, PM_PROC_NR);
CALLMAP(VM_DELDMA, do_deldma, PM_PROC_NR);
CALLMAP(VM_GETDMA, do_getdma, PM_PROC_NR);
CALLMAP(VM_NOTIFY_SIG, do_notify_sig, PM_PROC_NR);
/* Requests from RS */
CALLMAP(VM_RS_SET_PRIV, do_rs_set_priv, RS_PROC_NR);
/* Requests from userland (source unrestricted). */
CALLMAP(VM_MMAP, do_mmap, ANYEPM);
CALLMAP(VM_MUNMAP, do_munmap, ANYEPM);
CALLMAP(VM_MUNMAP_TEXT, do_munmap, ANYEPM);
CALLMAP(VM_MAP_PHYS, do_map_phys, ANYEPM); /* Does its own checking. */
CALLMAP(VM_UNMAP_PHYS, do_unmap_phys, ANYEPM);
/* Requests from userland (anyone can call but need an ACL bit). */
CALLMAP(VM_REMAP, do_remap, NEEDACL);
CALLMAP(VM_GETPHYS, do_get_phys, NEEDACL);
CALLMAP(VM_SHM_UNMAP, do_shared_unmap, NEEDACL);
CALLMAP(VM_GETREF, do_get_refcount, NEEDACL);
CALLMAP(VM_CTL, do_ctl, NEEDACL);
CALLMAP(VM_QUERY_EXIT, do_query_exit, NEEDACL);
/* Sanity checks */
if(find_kernel_top() >= VM_PROCSTART)
vm_panic("kernel loaded too high", NO_NUM);
/* Initialize the structures for queryexit */
init_query_exit();
/* Unmap our own low pages. */
unmap_ok = 1;
_minix_unmapzero();
}
/*===========================================================================*
* vm_acl_ok *
*===========================================================================*/
PRIVATE int vm_acl_ok(endpoint_t caller, int call)
{
int n, r;
/* Some calls are always allowed by some, or all, processes. */
if(EPMOK(vm_calls[call].vmc_callers, caller)) {
return OK;
}
if ((r = vm_isokendpt(caller, &n)) != OK)
vm_panic("VM: from strange source.", caller);
/* Other calls need an ACL bit. */
if (!(vm_calls[call].vmc_callers & EPM(NEEDACL))) {
return EPERM;
}
if (!GET_BIT(vmproc[n].vm_call_priv_mask, call)) {
printf("VM: no ACL for %s for %d\n",
vm_calls[call].vmc_name, caller);
return EPERM;
}
return OK;
}