minix/minix/kernel/const.h

55 lines
1.2 KiB
C
Raw Normal View History

/* General macros and constants used by the kernel. */
#ifndef CONST_H
#define CONST_H
2005-04-21 16:53:53 +02:00
#include <minix/config.h>
#include <minix/bitmap.h>
#include "config.h"
#include "debug.h"
2005-04-21 16:53:53 +02:00
'proc number' is process slot, 'endpoint' are generation-aware process instance numbers, encoded and decoded using macros in <minix/endpoint.h>. proc number -> endpoint migration . proc_nr in the interrupt hook is now an endpoint, proc_nr_e. . m_source for messages and notifies is now an endpoint, instead of proc number. . isokendpt() converts an endpoint to a process number, returns success (but fails if the process number is out of range, the process slot is not a living process, or the given endpoint number does not match the endpoint number in the process slot, indicating an old process). . okendpt() is the same as isokendpt(), but panic()s if the conversion fails. This is mainly used for decoding message.m_source endpoints, and other endpoint numbers in kernel data structures, which should always be correct. . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt() get passed the __FILE__ and __LINE__ of the calling lines, and print messages about what is wrong with the endpoint number (out of range proc, empty proc, or inconsistent endpoint number), with the caller, making finding where the conversion failed easy without having to include code for every call to print where things went wrong. Sometimes this is harmless (wrong arg to a kernel call), sometimes it's a fatal internal inconsistency (bogus m_source). . some process table fields have been appended an _e to indicate it's become and endpoint. . process endpoint is stored in p_endpoint, without generation number. it turns out the kernel never needs the generation number, except when fork()ing, so it's decoded then. . kernel calls all take endpoints as arguments, not proc numbers. the one exception is sys_fork(), which needs to know in which slot to put the child.
2006-03-03 11:00:02 +01:00
/* Translate an endpoint number to a process number, return success. */
#ifndef isokendpt
'proc number' is process slot, 'endpoint' are generation-aware process instance numbers, encoded and decoded using macros in <minix/endpoint.h>. proc number -> endpoint migration . proc_nr in the interrupt hook is now an endpoint, proc_nr_e. . m_source for messages and notifies is now an endpoint, instead of proc number. . isokendpt() converts an endpoint to a process number, returns success (but fails if the process number is out of range, the process slot is not a living process, or the given endpoint number does not match the endpoint number in the process slot, indicating an old process). . okendpt() is the same as isokendpt(), but panic()s if the conversion fails. This is mainly used for decoding message.m_source endpoints, and other endpoint numbers in kernel data structures, which should always be correct. . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt() get passed the __FILE__ and __LINE__ of the calling lines, and print messages about what is wrong with the endpoint number (out of range proc, empty proc, or inconsistent endpoint number), with the caller, making finding where the conversion failed easy without having to include code for every call to print where things went wrong. Sometimes this is harmless (wrong arg to a kernel call), sometimes it's a fatal internal inconsistency (bogus m_source). . some process table fields have been appended an _e to indicate it's become and endpoint. . process endpoint is stored in p_endpoint, without generation number. it turns out the kernel never needs the generation number, except when fork()ing, so it's decoded then. . kernel calls all take endpoints as arguments, not proc numbers. the one exception is sys_fork(), which needs to know in which slot to put the child.
2006-03-03 11:00:02 +01:00
#define isokendpt(e,p) isokendpt_d((e),(p),0)
#define okendpt(e,p) isokendpt_d((e),(p),1)
#endif
'proc number' is process slot, 'endpoint' are generation-aware process instance numbers, encoded and decoded using macros in <minix/endpoint.h>. proc number -> endpoint migration . proc_nr in the interrupt hook is now an endpoint, proc_nr_e. . m_source for messages and notifies is now an endpoint, instead of proc number. . isokendpt() converts an endpoint to a process number, returns success (but fails if the process number is out of range, the process slot is not a living process, or the given endpoint number does not match the endpoint number in the process slot, indicating an old process). . okendpt() is the same as isokendpt(), but panic()s if the conversion fails. This is mainly used for decoding message.m_source endpoints, and other endpoint numbers in kernel data structures, which should always be correct. . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt() get passed the __FILE__ and __LINE__ of the calling lines, and print messages about what is wrong with the endpoint number (out of range proc, empty proc, or inconsistent endpoint number), with the caller, making finding where the conversion failed easy without having to include code for every call to print where things went wrong. Sometimes this is harmless (wrong arg to a kernel call), sometimes it's a fatal internal inconsistency (bogus m_source). . some process table fields have been appended an _e to indicate it's become and endpoint. . process endpoint is stored in p_endpoint, without generation number. it turns out the kernel never needs the generation number, except when fork()ing, so it's decoded then. . kernel calls all take endpoints as arguments, not proc numbers. the one exception is sys_fork(), which needs to know in which slot to put the child.
2006-03-03 11:00:02 +01:00
/* Constants used in virtual_copy(). Values must be 0 and 1, respectively. */
#define _SRC_ 0
#define _DST_ 1
#define get_sys_bit(map,bit) \
( MAP_CHUNK((map).chunk,bit) & (1 << CHUNK_OFFSET(bit) ))
2006-06-23 17:32:24 +02:00
#define get_sys_bits(map,bit) \
( MAP_CHUNK((map).chunk,bit) )
#define set_sys_bit(map,bit) \
( MAP_CHUNK((map).chunk,bit) |= (1 << CHUNK_OFFSET(bit) ))
#define unset_sys_bit(map,bit) \
( MAP_CHUNK((map).chunk,bit) &= ~(1 << CHUNK_OFFSET(bit) ))
/* for kputc() */
#define END_OF_KMESS 0
/* User limits. */
#ifndef USR_DATATOP
#ifndef _MINIX_MAGIC
#define USR_DATATOP 0xF0000000
#else
#define USR_DATATOP 0xE0000000 /* TODO: is this necessary? */
#endif
#endif
#ifndef USR_STACKTOP
#define USR_STACKTOP USR_DATATOP
#endif
#ifndef USR_DATATOP_COMPACT
#define USR_DATATOP_COMPACT USR_DATATOP
#endif
#ifndef USR_STACKTOP_COMPACT
#define USR_STACKTOP_COMPACT 0x50000000
#endif
#endif /* CONST_H */