gem5/cpu/o3/commit_impl.hh
Kevin Lim 8a9416ef8d Small fixes to O3 model.
cpu/o3/alpha_dyn_inst.hh:
    Set the instResult using a function on the base dyn inst.
cpu/o3/bpred_unit_impl.hh:
    Don't need to reset the state.
cpu/o3/commit_impl.hh:
    Mark instructions as completed.

    Wait until all stores are written back to handle a fault.
cpu/o3/cpu.cc:
    Clear instruction lists when switching out.
cpu/o3/lsq_unit.hh:
    Allow wbEvent to be set externally.
cpu/o3/lsq_unit_impl.hh:
    Mark instructions as completed properly.  Also use events for writing back stores even if there is a hit in the dcache.

--HG--
extra : convert_revision : 172ad088b75ac31e848a5040633152b5c051444c
2006-05-11 15:39:02 -04:00

1445 lines
43 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <stdio.h>
#include <string.h>
#include "base/loader/symtab.hh"
#include "base/timebuf.hh"
#include "cpu/exetrace.hh"
#include "cpu/o3/commit.hh"
#include "cpu/o3/thread_state.hh"
using namespace std;
template <class Impl>
DefaultCommit<Impl>::TrapEvent::TrapEvent(DefaultCommit<Impl> *_commit,
unsigned _tid)
: Event(&mainEventQueue, CPU_Tick_Pri), commit(_commit), tid(_tid)
{
this->setFlags(Event::AutoDelete);
}
template <class Impl>
void
DefaultCommit<Impl>::TrapEvent::process()
{
// This will get reset if it was switched out.
commit->trapSquash[tid] = true;
}
template <class Impl>
const char *
DefaultCommit<Impl>::TrapEvent::description()
{
return "Trap event";
}
template <class Impl>
DefaultCommit<Impl>::DefaultCommit(Params *params)
: dcacheInterface(params->dcacheInterface),
squashCounter(0),
iewToCommitDelay(params->iewToCommitDelay),
commitToIEWDelay(params->commitToIEWDelay),
renameToROBDelay(params->renameToROBDelay),
fetchToCommitDelay(params->commitToFetchDelay),
renameWidth(params->renameWidth),
iewWidth(params->executeWidth),
commitWidth(params->commitWidth),
numThreads(params->numberOfThreads),
switchedOut(false)
{
_status = Active;
_nextStatus = Inactive;
string policy = params->smtCommitPolicy;
//Convert string to lowercase
std::transform(policy.begin(), policy.end(), policy.begin(),
(int(*)(int)) tolower);
//Assign commit policy
if (policy == "aggressive"){
commitPolicy = Aggressive;
DPRINTF(Commit,"Commit Policy set to Aggressive.");
} else if (policy == "roundrobin"){
commitPolicy = RoundRobin;
//Set-Up Priority List
for (int tid=0; tid < numThreads; tid++) {
priority_list.push_back(tid);
}
DPRINTF(Commit,"Commit Policy set to Round Robin.");
} else if (policy == "oldestready"){
commitPolicy = OldestReady;
DPRINTF(Commit,"Commit Policy set to Oldest Ready.");
} else {
assert(0 && "Invalid SMT Commit Policy. Options Are: {Aggressive,"
"RoundRobin,OldestReady}");
}
for (int i=0; i < numThreads; i++) {
commitStatus[i] = Idle;
changedROBNumEntries[i] = false;
trapSquash[i] = false;
xcSquash[i] = false;
}
// Hardcoded trap latency.
trapLatency = 6;
fetchTrapLatency = 12;
fetchFaultTick = 0;
fetchTrapWait = 0;
}
template <class Impl>
std::string
DefaultCommit<Impl>::name() const
{
return cpu->name() + ".commit";
}
template <class Impl>
void
DefaultCommit<Impl>::regStats()
{
using namespace Stats;
commitCommittedInsts
.name(name() + ".commitCommittedInsts")
.desc("The number of committed instructions")
.prereq(commitCommittedInsts);
commitSquashedInsts
.name(name() + ".commitSquashedInsts")
.desc("The number of squashed insts skipped by commit")
.prereq(commitSquashedInsts);
commitSquashEvents
.name(name() + ".commitSquashEvents")
.desc("The number of times commit is told to squash")
.prereq(commitSquashEvents);
commitNonSpecStalls
.name(name() + ".commitNonSpecStalls")
.desc("The number of times commit has been forced to stall to "
"communicate backwards")
.prereq(commitNonSpecStalls);
/*
commitCommittedBranches
.name(name() + ".commitCommittedBranches")
.desc("The number of committed branches")
.prereq(commitCommittedBranches);
commitCommittedLoads
.name(name() + ".commitCommittedLoads")
.desc("The number of committed loads")
.prereq(commitCommittedLoads);
commitCommittedMemRefs
.name(name() + ".commitCommittedMemRefs")
.desc("The number of committed memory references")
.prereq(commitCommittedMemRefs);
*/
branchMispredicts
.name(name() + ".branchMispredicts")
.desc("The number of times a branch was mispredicted")
.prereq(branchMispredicts);
numCommittedDist
.init(0,commitWidth,1)
.name(name() + ".COM:committed_per_cycle")
.desc("Number of insts commited each cycle")
.flags(Stats::pdf)
;
stat_com_inst
.init(cpu->number_of_threads)
.name(name() + ".COM:count")
.desc("Number of instructions committed")
.flags(total)
;
stat_com_swp
.init(cpu->number_of_threads)
.name(name() + ".COM:swp_count")
.desc("Number of s/w prefetches committed")
.flags(total)
;
stat_com_refs
.init(cpu->number_of_threads)
.name(name() + ".COM:refs")
.desc("Number of memory references committed")
.flags(total)
;
stat_com_loads
.init(cpu->number_of_threads)
.name(name() + ".COM:loads")
.desc("Number of loads committed")
.flags(total)
;
stat_com_membars
.init(cpu->number_of_threads)
.name(name() + ".COM:membars")
.desc("Number of memory barriers committed")
.flags(total)
;
stat_com_branches
.init(cpu->number_of_threads)
.name(name() + ".COM:branches")
.desc("Number of branches committed")
.flags(total)
;
//
// Commit-Eligible instructions...
//
// -> The number of instructions eligible to commit in those
// cycles where we reached our commit BW limit (less the number
// actually committed)
//
// -> The average value is computed over ALL CYCLES... not just
// the BW limited cycles
//
// -> The standard deviation is computed only over cycles where
// we reached the BW limit
//
commit_eligible
.init(cpu->number_of_threads)
.name(name() + ".COM:bw_limited")
.desc("number of insts not committed due to BW limits")
.flags(total)
;
commit_eligible_samples
.name(name() + ".COM:bw_lim_events")
.desc("number cycles where commit BW limit reached")
;
}
template <class Impl>
void
DefaultCommit<Impl>::setCPU(FullCPU *cpu_ptr)
{
DPRINTF(Commit, "Commit: Setting CPU pointer.\n");
cpu = cpu_ptr;
// Commit must broadcast the number of free entries it has at the start of
// the simulation, so it starts as active.
cpu->activateStage(FullCPU::CommitIdx);
trapLatency = cpu->cycles(6);
fetchTrapLatency = cpu->cycles(12);
}
template <class Impl>
void
DefaultCommit<Impl>::setThreads(vector<Thread *> &threads)
{
thread = threads;
}
template <class Impl>
void
DefaultCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(Commit, "Commit: Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to send information back to IEW.
toIEW = timeBuffer->getWire(0);
// Setup wire to read data from IEW (for the ROB).
robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
}
template <class Impl>
void
DefaultCommit<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
{
DPRINTF(Commit, "Commit: Setting fetch queue pointer.\n");
fetchQueue = fq_ptr;
// Setup wire to get instructions from rename (for the ROB).
fromFetch = fetchQueue->getWire(-fetchToCommitDelay);
}
template <class Impl>
void
DefaultCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
DPRINTF(Commit, "Commit: Setting rename queue pointer.\n");
renameQueue = rq_ptr;
// Setup wire to get instructions from rename (for the ROB).
fromRename = renameQueue->getWire(-renameToROBDelay);
}
template <class Impl>
void
DefaultCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
{
DPRINTF(Commit, "Commit: Setting IEW queue pointer.\n");
iewQueue = iq_ptr;
// Setup wire to get instructions from IEW.
fromIEW = iewQueue->getWire(-iewToCommitDelay);
}
template <class Impl>
void
DefaultCommit<Impl>::setIEWStage(IEW *iew_stage)
{
iewStage = iew_stage;
}
template<class Impl>
void
DefaultCommit<Impl>::setActiveThreads(list<unsigned> *at_ptr)
{
DPRINTF(Commit, "Commit: Setting active threads list pointer.\n");
activeThreads = at_ptr;
}
template <class Impl>
void
DefaultCommit<Impl>::setRenameMap(RenameMap rm_ptr[])
{
DPRINTF(Commit, "Setting rename map pointers.\n");
for (int i=0; i < numThreads; i++) {
renameMap[i] = &rm_ptr[i];
}
}
template <class Impl>
void
DefaultCommit<Impl>::setROB(ROB *rob_ptr)
{
DPRINTF(Commit, "Commit: Setting ROB pointer.\n");
rob = rob_ptr;
}
template <class Impl>
void
DefaultCommit<Impl>::initStage()
{
rob->setActiveThreads(activeThreads);
rob->resetEntries();
// Broadcast the number of free entries.
for (int i=0; i < numThreads; i++) {
toIEW->commitInfo[i].usedROB = true;
toIEW->commitInfo[i].freeROBEntries = rob->numFreeEntries(i);
}
cpu->activityThisCycle();
}
template <class Impl>
void
DefaultCommit<Impl>::switchOut()
{
rob->switchOut();
}
template <class Impl>
void
DefaultCommit<Impl>::takeOverFrom()
{
_status = Active;
_nextStatus = Inactive;
for (int i=0; i < numThreads; i++) {
commitStatus[i] = Idle;
changedROBNumEntries[i] = false;
trapSquash[i] = false;
xcSquash[i] = false;
}
squashCounter = 0;
rob->takeOverFrom();
}
template <class Impl>
void
DefaultCommit<Impl>::updateStatus()
{
if (commitStatus[0] == TrapPending ||
commitStatus[0] == FetchTrapPending) {
_nextStatus = Active;
}
if (_nextStatus == Inactive && _status == Active) {
DPRINTF(Activity, "Deactivating stage.\n");
cpu->deactivateStage(FullCPU::CommitIdx);
} else if (_nextStatus == Active && _status == Inactive) {
DPRINTF(Activity, "Activating stage.\n");
cpu->activateStage(FullCPU::CommitIdx);
}
_status = _nextStatus;
// reset ROB changed variable
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
changedROBNumEntries[tid] = false;
}
}
template <class Impl>
void
DefaultCommit<Impl>::setNextStatus()
{
int squashes = 0;
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (commitStatus[tid] == ROBSquashing) {
squashes++;
}
}
assert(squashes == squashCounter);
// If commit is currently squashing, then it will have activity for the
// next cycle. Set its next status as active.
if (squashCounter) {
_nextStatus = Active;
}
}
template <class Impl>
bool
DefaultCommit<Impl>::changedROBEntries()
{
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (changedROBNumEntries[tid]) {
return true;
}
}
return false;
}
template <class Impl>
unsigned
DefaultCommit<Impl>::numROBFreeEntries(unsigned tid)
{
return rob->numFreeEntries(tid);
}
template <class Impl>
void
DefaultCommit<Impl>::generateTrapEvent(unsigned tid)
{
DPRINTF(Commit, "Generating trap event for [tid:%i]\n", tid);
TrapEvent *trap = new TrapEvent(this, tid);
trap->schedule(curTick + trapLatency);
thread[tid]->trapPending = true;
}
template <class Impl>
void
DefaultCommit<Impl>::generateXCEvent(unsigned tid)
{
DPRINTF(Commit, "Generating XC squash event for [tid:%i]\n", tid);
xcSquash[tid] = true;
}
template <class Impl>
void
DefaultCommit<Impl>::squashFromTrap(unsigned tid)
{
// If we want to include the squashing instruction in the squash,
// then use one older sequence number.
// Hopefully this doesn't mess things up. Basically I want to squash
// all instructions of this thread.
InstSeqNum squashed_inst = rob->isEmpty() ?
0 : rob->readHeadInst(tid)->seqNum - 1;
// All younger instructions will be squashed. Set the sequence
// number as the youngest instruction in the ROB (0 in this case.
// Hopefully nothing breaks.)
youngestSeqNum[tid] = 0;
rob->squash(squashed_inst, tid);
changedROBNumEntries[tid] = true;
// Send back the sequence number of the squashed instruction.
toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
// Send back the squash signal to tell stages that they should
// squash.
toIEW->commitInfo[tid].squash = true;
// Send back the rob squashing signal so other stages know that
// the ROB is in the process of squashing.
toIEW->commitInfo[tid].robSquashing = true;
toIEW->commitInfo[tid].branchMispredict = false;
// toIEW->commitInfo[tid].branchTaken = fromIEW->branchTaken[tid];
toIEW->commitInfo[tid].nextPC = PC[tid];
DPRINTF(Commit, "Squashing from trap, restarting at PC %#x\n", PC[tid]);
// Hopefully nobody tries to use the mispredPC becuase I said there
// wasn't a branch mispredict.
// toIEW->commitInfo[tid].mispredPC = fromIEW->mispredPC[tid];
thread[tid]->trapPending = false;
thread[tid]->inSyscall = false;
trapSquash[tid] = false;
// Not sure what to set this to...
commitStatus[tid] = ROBSquashing;
cpu->activityThisCycle();
++squashCounter;
}
template <class Impl>
void
DefaultCommit<Impl>::squashFromXC(unsigned tid)
{
// For now these are identical. In the future, the squash from trap
// might execute the trap prior to the squash.
// If we want to include the squashing instruction in the squash,
// then use one older sequence number.
// Hopefully this doesn't mess things up. Basically I want to squash
// all instructions of this thread.
InstSeqNum squashed_inst = rob->isEmpty() ?
0 : rob->readHeadInst(tid)->seqNum - 1;;
// All younger instructions will be squashed. Set the sequence
// number as the youngest instruction in the ROB (0 in this case.
// Hopefully nothing breaks.)
youngestSeqNum[tid] = 0;
rob->squash(squashed_inst, tid);
changedROBNumEntries[tid] = true;
// Send back the sequence number of the squashed instruction.
toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
// Send back the squash signal to tell stages that they should
// squash.
toIEW->commitInfo[tid].squash = true;
// Send back the rob squashing signal so other stages know that
// the ROB is in the process of squashing.
toIEW->commitInfo[tid].robSquashing = true;
toIEW->commitInfo[tid].branchMispredict = false;
// toIEW->commitInfo[tid].branchTaken = fromIEW->branchTaken[tid];
toIEW->commitInfo[tid].nextPC = PC[tid];
DPRINTF(Commit, "Squashing from XC, restarting at PC %#x\n", PC[tid]);
// Hopefully nobody tries to use the mispredPC becuase I said there
// wasn't a branch mispredict.
// toIEW->commitInfo[tid].mispredPC = fromIEW->mispredPC[tid];
thread[tid]->inSyscall = false;
assert(!thread[tid]->trapPending);
// Not sure what to set this to...
commitStatus[tid] = ROBSquashing;
cpu->activityThisCycle();
xcSquash[tid] = false;
++squashCounter;
}
template <class Impl>
void
DefaultCommit<Impl>::squashInFlightInsts(unsigned tid)
{
// @todo: Fix this hardcoded number.
for (int i = 0; i < -5; ++i) {
for (int j = 0; j < (*iewQueue)[i].size; ++j) {
DynInstPtr inst = (*iewQueue)[i].insts[j];
if (inst->threadNumber == tid &&
!inst->isSquashed()) {
inst->setSquashed();
}
}
}
}
template <class Impl>
void
DefaultCommit<Impl>::tick()
{
wroteToTimeBuffer = false;
_nextStatus = Inactive;
// If the ROB is currently in its squash sequence, then continue
// to squash. In this case, commit does not do anything. Otherwise
// run commit.
list<unsigned>::iterator threads = (*activeThreads).begin();
// Maybe this should be dependent upon any of the commits actually
// squashing.
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (commitStatus[tid] == ROBSquashing) {
if (rob->isDoneSquashing(tid)) {
commitStatus[tid] = Running;
--squashCounter;
} else {
DPRINTF(Commit,"[tid:%u]: Still Squashing, cannot commit any"
"insts this cycle.\n", tid);
}
}
}
commit();
markCompletedInsts();
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (!rob->isEmpty(tid) && rob->readHeadInst(tid)->readyToCommit()) {
// The ROB has more instructions it can commit. Its next status
// will be active.
_nextStatus = Active;
DynInstPtr inst = rob->readHeadInst(tid);
DPRINTF(Commit,"[tid:%i]: Instruction [sn:%lli] PC %#x is head of"
" ROB and ready to commit\n",
tid, inst->seqNum, inst->readPC());
} else if (!rob->isEmpty(tid)) {
DynInstPtr inst = rob->readHeadInst(tid);
DPRINTF(Commit,"[tid:%i]: Can't commit, Instruction [sn:%lli] PC "
"%#x is head of ROB and not ready\n",
tid, inst->seqNum, inst->readPC());
}
DPRINTF(Commit, "[tid:%i]: ROB has %d insts & %d free entries.\n",
tid, rob->countInsts(tid), rob->numFreeEntries(tid));
}
if (wroteToTimeBuffer) {
DPRINTF(Activity,"Activity This Cycle.\n");
cpu->activityThisCycle();
}
updateStatus();
}
template <class Impl>
void
DefaultCommit<Impl>::commit()
{
//////////////////////////////////////
// Check for interrupts
//////////////////////////////////////
// Process interrupts if interrupts are enabled and not in PAL mode.
// Take the PC from commit and write it to the IPR, then squash. The
// interrupt completing will take care of restoring the PC from that value
// in the IPR. Look at IPR[EXC_ADDR];
// hwrei() is what resets the PC to the place where instruction execution
// beings again.
#if FULL_SYSTEM
//#if 0
if (cpu->checkInterrupts &&
cpu->check_interrupts() &&
!cpu->inPalMode(readPC()) &&
!trapSquash[0] &&
!xcSquash[0]) {
// commitStatus[0] = TrapPending;
toIEW->commitInfo[0].interruptPending = true;
if (rob->isEmpty() && !iewStage->hasStoresToWB()) {
// Will need to squash all instructions currently in flight and have
// the interrupt handler restart at the last non-committed inst.
// Most of that can be handled through the trap() function. The
// processInterrupts() function really just checks for interrupts
// and then calls trap() if there is an interrupt present.
// Not sure which thread should be the one to interrupt. For now
// always do thread 0.
assert(!thread[0]->inSyscall);
thread[0]->inSyscall = true;
// CPU will handle implementation of the interrupt.
cpu->processInterrupts();
// Now squash or record that I need to squash this cycle.
commitStatus[0] = TrapPending;
// Exit state update mode to avoid accidental updating.
thread[0]->inSyscall = false;
// Generate trap squash event.
generateTrapEvent(0);
toIEW->commitInfo[0].clearInterrupt = true;
DPRINTF(Commit, "Interrupt detected.\n");
} else {
DPRINTF(Commit, "Interrupt pending, waiting for ROB to empty.\n");
}
}
#endif // FULL_SYSTEM
////////////////////////////////////
// Check for squash signal, handle that first
////////////////////////////////////
// Check if the IEW stage is telling the ROB to squash.
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (fromFetch->fetchFault && commitStatus[0] != TrapPending) {
// Record the fault. Wait until it's empty in the ROB. Then handle the trap.
// Ignore it if there's already a trap pending as fetch will be redirected.
fetchFault = fromFetch->fetchFault;
fetchFaultSN = fromFetch->fetchFaultSN;
fetchFaultTick = curTick + fetchTrapLatency;
commitStatus[0] = FetchTrapPending;
DPRINTF(Commit, "Fault from fetch recorded. Will trap if the "
"ROB empties without squashing the fault.\n");
fetchTrapWait = 0;
}
if (fromFetch->clearFetchFault) {
DPRINTF(Commit, "Received clear fetch fault signal\n");
fetchTrapWait = 0;
if (commitStatus[0] == FetchTrapPending) {
DPRINTF(Commit, "Clearing fault from fetch\n");
commitStatus[0] = Running;
}
}
// Not sure which one takes priority. I think if we have
// both, that's a bad sign.
if (trapSquash[tid] == true) {
assert(!xcSquash[tid]);
squashFromTrap(tid);
} else if (xcSquash[tid] == true) {
squashFromXC(tid);
}
// Squashed sequence number must be older than youngest valid
// instruction in the ROB. This prevents squashes from younger
// instructions overriding squashes from older instructions.
if (fromIEW->squash[tid] &&
commitStatus[tid] != TrapPending &&
fromIEW->squashedSeqNum[tid] <= youngestSeqNum[tid]) {
DPRINTF(Commit, "[tid:%u]: Squashing instructions in the "
"ROB.\n",
tid);
DPRINTF(Commit, "[tid:%i]: Squashing due to PC %#x [sn:%i]\n",
tid,
fromIEW->mispredPC[tid],
fromIEW->squashedSeqNum[tid]);
DPRINTF(Commit, "[tid:%i]: Redirecting to PC %#x\n",
tid,
fromIEW->nextPC[tid]);
commitStatus[tid] = ROBSquashing;
++squashCounter;
// If we want to include the squashing instruction in the squash,
// then use one older sequence number.
InstSeqNum squashed_inst = fromIEW->squashedSeqNum[tid];
if (fromIEW->includeSquashInst[tid] == true)
squashed_inst--;
// All younger instructions will be squashed. Set the sequence
// number as the youngest instruction in the ROB.
youngestSeqNum[tid] = squashed_inst;
rob->squash(squashed_inst, tid);
changedROBNumEntries[tid] = true;
// Send back the sequence number of the squashed instruction.
toIEW->commitInfo[tid].doneSeqNum = squashed_inst;
// Send back the squash signal to tell stages that they should
// squash.
toIEW->commitInfo[tid].squash = true;
// Send back the rob squashing signal so other stages know that
// the ROB is in the process of squashing.
toIEW->commitInfo[tid].robSquashing = true;
toIEW->commitInfo[tid].branchMispredict =
fromIEW->branchMispredict[tid];
toIEW->commitInfo[tid].branchTaken =
fromIEW->branchTaken[tid];
toIEW->commitInfo[tid].nextPC = fromIEW->nextPC[tid];
DPRINTF(Commit, "Squashing from IEW, restarting at PC %#x\n",
fromIEW->nextPC[tid]);
toIEW->commitInfo[tid].mispredPC =
fromIEW->mispredPC[tid];
if (toIEW->commitInfo[tid].branchMispredict) {
++branchMispredicts;
}
}
}
setNextStatus();
if (squashCounter != numThreads) {
// If we're not currently squashing, then get instructions.
getInsts();
// Try to commit any instructions.
commitInsts();
}
//Check for any activity
threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (changedROBNumEntries[tid]) {
toIEW->commitInfo[tid].usedROB = true;
toIEW->commitInfo[tid].freeROBEntries = rob->numFreeEntries(tid);
if (rob->isEmpty(tid)) {
toIEW->commitInfo[tid].emptyROB = true;
}
wroteToTimeBuffer = true;
changedROBNumEntries[tid] = false;
}
}
}
template <class Impl>
void
DefaultCommit<Impl>::commitInsts()
{
////////////////////////////////////
// Handle commit
// Note that commit will be handled prior to the ROB so that the ROB
// only tries to commit instructions it has in this current cycle, and
// not instructions it is writing in during this cycle.
// Can't commit and squash things at the same time...
////////////////////////////////////
DPRINTF(Commit, "Trying to commit instructions in the ROB.\n");
unsigned num_committed = 0;
DynInstPtr head_inst;
#if FULL_SYSTEM
if (commitStatus[0] == FetchTrapPending) {
DPRINTF(Commit, "Fault from fetch is pending.\n");
if (rob->isEmpty()) {
fetchTrapWait++;
if (fetchTrapWait > 10000000) {
panic("Fetch trap has been pending for a long time!");
}
if (fetchFaultTick > curTick) {
DPRINTF(Commit, "Not enough cycles since fault, fault will "
"happen on %lli\n",
fetchFaultTick);
cpu->activityThisCycle();
return;
} else if (iewStage->hasStoresToWB()) {
DPRINTF(Commit, "IEW still has stores to WB. Waiting until "
"they are completed. fetchTrapWait:%i\n",
fetchTrapWait);
cpu->activityThisCycle();
return;
} else if (cpu->inPalMode(readPC())) {
DPRINTF(Commit, "In pal mode right now. fetchTrapWait:%i\n",
fetchTrapWait);
return;
}
fetchTrapWait = 0;
DPRINTF(Commit, "ROB is empty, handling fetch trap.\n");
assert(!thread[0]->inSyscall);
thread[0]->inSyscall = true;
// Consider holding onto the trap and waiting until the trap event
// happens for this to be executed.
cpu->trap(fetchFault, 0);
// Exit state update mode to avoid accidental updating.
thread[0]->inSyscall = false;
commitStatus[0] = TrapPending;
// Set it up so that we squash next cycle
trapSquash[0] = true;
return;
}
}
#endif
// Commit as many instructions as possible until the commit bandwidth
// limit is reached, or it becomes impossible to commit any more.
while (num_committed < commitWidth) {
int commit_thread = getCommittingThread();
if (commit_thread == -1 || !rob->isHeadReady(commit_thread))
break;
head_inst = rob->readHeadInst(commit_thread);
int tid = head_inst->threadNumber;
assert(tid == commit_thread);
DPRINTF(Commit, "Trying to commit head instruction, [sn:%i] [tid:%i]\n",
head_inst->seqNum, tid);
// If the head instruction is squashed, it is ready to retire at any
// time. However, we need to avoid updating any other state
// incorrectly if it's already been squashed.
if (head_inst->isSquashed()) {
DPRINTF(Commit, "Retiring squashed instruction from "
"ROB.\n");
// Tell ROB to retire head instruction. This retires the head
// inst in the ROB without affecting any other stages.
rob->retireHead(commit_thread);
++commitSquashedInsts;
// Record that the number of ROB entries has changed.
changedROBNumEntries[tid] = true;
} else {
PC[tid] = head_inst->readPC();
nextPC[tid] = head_inst->readNextPC();
// Increment the total number of non-speculative instructions
// executed.
// Hack for now: it really shouldn't happen until after the
// commit is deemed to be successful, but this count is needed
// for syscalls.
thread[tid]->funcExeInst++;
// Try to commit the head instruction.
bool commit_success = commitHead(head_inst, num_committed);
if (commit_success) {
++num_committed;
// Record that the number of ROB entries has changed.
changedROBNumEntries[tid] = true;
// Set the doneSeqNum to the youngest committed instruction.
toIEW->commitInfo[tid].doneSeqNum = head_inst->seqNum;
++commitCommittedInsts;
// To match the old model, don't count nops and instruction
// prefetches towards the total commit count.
if (!head_inst->isNop() && !head_inst->isInstPrefetch()) {
cpu->instDone(tid);
}
PC[tid] = nextPC[tid];
nextPC[tid] = nextPC[tid] + sizeof(TheISA::MachInst);
#if FULL_SYSTEM
int count = 0;
Addr oldpc;
do {
if (count == 0)
assert(!thread[tid]->inSyscall && !thread[tid]->trapPending);
oldpc = PC[tid];
cpu->system->pcEventQueue.service(
thread[tid]->getXCProxy());
count++;
} while (oldpc != PC[tid]);
if (count > 1) {
DPRINTF(Commit, "PC skip function event, stopping commit\n");
break;
}
#endif
} else {
DPRINTF(Commit, "Unable to commit head instruction PC:%#x "
"[tid:%i] [sn:%i].\n",
head_inst->readPC(), tid ,head_inst->seqNum);
break;
}
}
}
DPRINTF(CommitRate, "%i\n", num_committed);
numCommittedDist.sample(num_committed);
if (num_committed == commitWidth) {
commit_eligible[0]++;
}
}
template <class Impl>
bool
DefaultCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
{
// Make sure instruction is valid
assert(head_inst);
int tid = head_inst->threadNumber;
// If the instruction is not executed yet, then it is a non-speculative
// or store inst. Signal backwards that it should be executed.
if (!head_inst->isExecuted()) {
// Keep this number correct. We have not yet actually executed
// and committed this instruction.
thread[tid]->funcExeInst--;
head_inst->reachedCommit = true;
if (head_inst->isNonSpeculative() ||
head_inst->isMemBarrier() ||
head_inst->isWriteBarrier()) {
#if !FULL_SYSTEM
// Hack to make sure syscalls aren't executed until all stores
// write back their data. This direct communication shouldn't
// be used for anything other than this.
if (inst_num > 0 || iewStage->hasStoresToWB())
#else
if ((head_inst->isMemBarrier() || head_inst->isWriteBarrier() ||
head_inst->isQuiesce()) &&
iewStage->hasStoresToWB())
#endif
{
DPRINTF(Commit, "Waiting for all stores to writeback.\n");
return false;
}
DPRINTF(Commit, "Encountered a barrier or non-speculative "
"instruction [sn:%lli] at the head of the ROB, PC %#x.\n",
head_inst->seqNum, head_inst->readPC());
// Send back the non-speculative instruction's sequence number.
toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
// Change the instruction so it won't try to commit again until
// it is executed.
head_inst->clearCanCommit();
++commitNonSpecStalls;
return false;
} else if (head_inst->isLoad()) {
DPRINTF(Commit, "[sn:%lli]: Uncached load, PC %#x.\n",
head_inst->seqNum, head_inst->readPC());
// Send back the non-speculative instruction's sequence
// number. Maybe just tell the lsq to re-execute the load.
toIEW->commitInfo[tid].nonSpecSeqNum = head_inst->seqNum;
toIEW->commitInfo[tid].uncached = true;
toIEW->commitInfo[tid].uncachedLoad = head_inst;
head_inst->clearCanCommit();
return false;
} else {
panic("Trying to commit un-executed instruction "
"of unknown type!\n");
}
}
// Now check if it's one of the special trap or barrier or
// serializing instructions.
if (head_inst->isThreadSync())/* ||
// head_inst->isMemBarrier() ||
head_inst->isWriteBarrier())*/
{
// Not handled for now.
panic("Barrier instructions are not handled yet.\n");
}
if (!head_inst->isStore()) {
head_inst->setCompleted();
}
// Check if the instruction caused a fault. If so, trap.
Fault inst_fault = head_inst->getFault();
if (inst_fault != NoFault) {
if (!head_inst->isNop()) {
#if FULL_SYSTEM
DPRINTF(Commit, "Inst [sn:%lli] PC %#x has a fault\n",
head_inst->seqNum, head_inst->readPC());
if (iewStage->hasStoresToWB()) {
DPRINTF(Commit, "Stores outstanding, fault must wait.\n");
return false;
}
assert(!thread[tid]->inSyscall);
thread[tid]->inSyscall = true;
// Hack for now; DTB will sometimes need the machine instruction
// for when faults happen. So we will set it here, prior to the
// DTB possibly needing it for this translation.
thread[tid]->setInst(
static_cast<TheISA::MachInst>(head_inst->staticInst->machInst));
// Consider holding onto the trap and waiting until the trap event
// happens for this to be executed.
cpu->trap(inst_fault, tid);
// Exit state update mode to avoid accidental updating.
thread[tid]->inSyscall = false;
commitStatus[tid] = TrapPending;
// Generate trap squash event.
generateTrapEvent(tid);
return false;
#else // !FULL_SYSTEM
panic("fault (%d) detected @ PC %08p", inst_fault,
head_inst->PC);
#endif // FULL_SYSTEM
}
}
// Check if we're really ready to commit. If not then return false.
// I'm pretty sure all instructions should be able to commit if they've
// reached this far. For now leave this in as a check.
if (!rob->isHeadReady(tid)) {
panic("Unable to commit head instruction!\n");
return false;
}
updateComInstStats(head_inst);
// Now that the instruction is going to be committed, finalize its
// trace data.
if (head_inst->traceData) {
head_inst->traceData->setFetchSeq(head_inst->seqNum);
head_inst->traceData->setCPSeq(thread[tid]->numInst);
head_inst->traceData->finalize();
head_inst->traceData = NULL;
}
// Update the commit rename map
for (int i = 0; i < head_inst->numDestRegs(); i++) {
renameMap[tid]->setEntry(head_inst->destRegIdx(i),
head_inst->renamedDestRegIdx(i));
}
// Finally clear the head ROB entry.
rob->retireHead(tid);
// Return true to indicate that we have committed an instruction.
return true;
}
template <class Impl>
void
DefaultCommit<Impl>::getInsts()
{
//////////////////////////////////////
// Handle ROB functions
//////////////////////////////////////
// Read any renamed instructions and place them into the ROB. Do this
// prior to squashing to avoid having instructions in the ROB that
// don't get squashed properly.
int insts_to_process = min((int)renameWidth, fromRename->size);
for (int inst_num = 0; inst_num < insts_to_process; ++inst_num)
{
DynInstPtr inst = fromRename->insts[inst_num];
int tid = inst->threadNumber;
if (!inst->isSquashed() &&
commitStatus[tid] != ROBSquashing) {
changedROBNumEntries[tid] = true;
DPRINTF(Commit, "Inserting PC %#x [sn:%i] [tid:%i] into ROB.\n",
inst->readPC(), inst->seqNum, tid);
rob->insertInst(inst);
assert(rob->getThreadEntries(tid) <= rob->getMaxEntries(tid));
youngestSeqNum[tid] = inst->seqNum;
} else {
DPRINTF(Commit, "Instruction PC %#x [sn:%i] [tid:%i] was "
"squashed, skipping.\n",
inst->readPC(), inst->seqNum, tid);
}
}
}
template <class Impl>
void
DefaultCommit<Impl>::markCompletedInsts()
{
// Grab completed insts out of the IEW instruction queue, and mark
// instructions completed within the ROB.
for (int inst_num = 0;
inst_num < fromIEW->size && fromIEW->insts[inst_num];
++inst_num)
{
if (!fromIEW->insts[inst_num]->isSquashed()) {
DPRINTF(Commit, "[tid:%i]: Marking PC %#x, SN %i ready within ROB.\n",
fromIEW->insts[inst_num]->threadNumber,
fromIEW->insts[inst_num]->readPC(),
fromIEW->insts[inst_num]->seqNum);
// Mark the instruction as ready to commit.
fromIEW->insts[inst_num]->setCanCommit();
}
}
}
template <class Impl>
uint64_t
DefaultCommit<Impl>::readPC()
{
// @todo: Fix this single thread hack.
return PC[0];
}
template <class Impl>
void
DefaultCommit<Impl>::setSquashing(unsigned tid)
{
if (_status == Inactive) {
DPRINTF(Activity, "Activating stage.\n");
_status = Active;
cpu->activateStage(FullCPU::CommitIdx);
}
if (commitStatus[tid] != ROBSquashing) {
commitStatus[tid] = ROBSquashing;
++squashCounter;
}
}
template <class Impl>
bool
DefaultCommit<Impl>::robDoneSquashing()
{
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (!rob->isDoneSquashing(tid))
return false;
}
return true;
}
template <class Impl>
void
DefaultCommit<Impl>::updateComInstStats(DynInstPtr &inst)
{
unsigned thread = inst->threadNumber;
//
// Pick off the software prefetches
//
#ifdef TARGET_ALPHA
if (inst->isDataPrefetch()) {
stat_com_swp[thread]++;
} else {
stat_com_inst[thread]++;
}
#else
stat_com_inst[thread]++;
#endif
//
// Control Instructions
//
if (inst->isControl())
stat_com_branches[thread]++;
//
// Memory references
//
if (inst->isMemRef()) {
stat_com_refs[thread]++;
if (inst->isLoad()) {
stat_com_loads[thread]++;
}
}
if (inst->isMemBarrier()) {
stat_com_membars[thread]++;
}
}
////////////////////////////////////////
// //
// SMT COMMIT POLICY MAITAINED HERE //
// //
////////////////////////////////////////
template <class Impl>
int
DefaultCommit<Impl>::getCommittingThread()
{
if (numThreads > 1) {
switch (commitPolicy) {
case Aggressive:
//If Policy is Aggressive, commit will call
//this function multiple times per
//cycle
return oldestReady();
case RoundRobin:
return roundRobin();
case OldestReady:
return oldestReady();
default:
return -1;
}
} else {
int tid = (*activeThreads).front();
if (commitStatus[tid] == Running ||
commitStatus[tid] == Idle ||
commitStatus[tid] == FetchTrapPending) {
return tid;
} else {
return -1;
}
}
}
template<class Impl>
int
DefaultCommit<Impl>::roundRobin()
{
list<unsigned>::iterator pri_iter = priority_list.begin();
list<unsigned>::iterator end = priority_list.end();
while (pri_iter != end) {
unsigned tid = *pri_iter;
if (commitStatus[tid] == Running ||
commitStatus[tid] == Idle) {
if (rob->isHeadReady(tid)) {
priority_list.erase(pri_iter);
priority_list.push_back(tid);
return tid;
}
}
pri_iter++;
}
return -1;
}
template<class Impl>
int
DefaultCommit<Impl>::oldestReady()
{
unsigned oldest = 0;
bool first = true;
list<unsigned>::iterator threads = (*activeThreads).begin();
while (threads != (*activeThreads).end()) {
unsigned tid = *threads++;
if (!rob->isEmpty(tid) &&
(commitStatus[tid] == Running ||
commitStatus[tid] == Idle ||
commitStatus[tid] == FetchTrapPending)) {
if (rob->isHeadReady(tid)) {
DynInstPtr head_inst = rob->readHeadInst(tid);
if (first) {
oldest = tid;
first = false;
} else if (head_inst->seqNum < oldest) {
oldest = tid;
}
}
}
}
if (!first) {
return oldest;
} else {
return -1;
}
}