gem5/arch/alpha/alpha_memory.cc
Kevin Lim 70b35bab57 Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs.
They are now accessed by calling readMiscReg()/setMiscReg() on the XC.  Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future).

arch/alpha/alpha_memory.cc:
    Change accesses to IPR to go through the XC.
arch/alpha/ev5.cc:
    Change accesses for IPRs to go through the misc regs.
arch/alpha/isa/decoder.isa:
    Change accesses to IPRs to go through the misc regs.  readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect().
arch/alpha/isa/fp.isa:
    Change accesses to IPRs and Fpcr to go through the misc regs.
arch/alpha/isa/main.isa:
    Add support for all misc regs being accessed through readMiscReg() and setMiscReg().  Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index.
arch/alpha/isa_traits.hh:
    Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs.
    Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect.  The latter are basically the original read/write IPR functions, while the former are normal reads/writes.

    The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs.
arch/alpha/stacktrace.cc:
cpu/simple/cpu.cc:
dev/sinic.cc:
    Change accesses to the IPRs to go through the XC.
arch/alpha/vtophys.cc:
    Change access to the IPR to go through the XC.
arch/isa_parser.py:
    Change generation of code for control registers to use the readMiscReg and setMiscReg functions.
base/remote_gdb.cc:
    Change accesses to the IPR to go through the XC.
cpu/exec_context.hh:
    Use the miscRegs to access the lock addr, lock flag, and other misc registers.
cpu/o3/alpha_cpu.hh:
cpu/simple/cpu.hh:
    Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions.
cpu/o3/alpha_cpu_impl.hh:
    Change accesses to the IPRs to go through the miscRegs.
    For now comment out some of the accesses to the misc regs until the proxy exec context is completed.
cpu/o3/alpha_dyn_inst.hh:
    Change accesses to misc regs to use readMiscReg and setMiscReg.
cpu/o3/alpha_dyn_inst_impl.hh:
    Remove old misc reg accessors.
cpu/o3/cpu.cc:
    Comment out old misc reg accesses until the proxy exec context is completed.
cpu/o3/cpu.hh:
    Change accesses to the misc regs.
cpu/o3/regfile.hh:
    Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg.  They are dummy functions for now until the proxy exec context is completed.
kern/kernel_stats.cc:
kern/system_events.cc:
    Have accesses to the IPRs go through the XC.
kern/tru64/tru64.hh:
    Have accesses to the misc regs use the new access methods.

--HG--
extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 11:44:35 -05:00

684 lines
18 KiB
C++

/*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sstream>
#include <string>
#include <vector>
#include "arch/alpha/alpha_memory.hh"
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "config/alpha_tlaser.hh"
#include "cpu/exec_context.hh"
#include "sim/builder.hh"
using namespace std;
using namespace EV5;
///////////////////////////////////////////////////////////////////////
//
// Alpha TLB
//
#ifdef DEBUG
bool uncacheBit39 = false;
bool uncacheBit40 = false;
#endif
#define MODE2MASK(X) (1 << (X))
AlphaTLB::AlphaTLB(const string &name, int s)
: SimObject(name), size(s), nlu(0)
{
table = new AlphaISA::PTE[size];
memset(table, 0, sizeof(AlphaISA::PTE[size]));
}
AlphaTLB::~AlphaTLB()
{
if (table)
delete [] table;
}
// look up an entry in the TLB
AlphaISA::PTE *
AlphaTLB::lookup(Addr vpn, uint8_t asn) const
{
// assume not found...
AlphaISA::PTE *retval = NULL;
PageTable::const_iterator i = lookupTable.find(vpn);
if (i != lookupTable.end()) {
while (i->first == vpn) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vpn == pte->tag && (pte->asma || pte->asn == asn)) {
retval = pte;
break;
}
++i;
}
}
DPRINTF(TLB, "lookup %#x, asn %#x -> %s ppn %#x\n", vpn, (int)asn,
retval ? "hit" : "miss", retval ? retval->ppn : 0);
return retval;
}
void
AlphaTLB::checkCacheability(MemReqPtr &req)
{
// in Alpha, cacheability is controlled by upper-level bits of the
// physical address
/*
* We support having the uncacheable bit in either bit 39 or bit 40.
* The Turbolaser platform (and EV5) support having the bit in 39, but
* Tsunami (which Linux assumes uses an EV6) generates accesses with
* the bit in 40. So we must check for both, but we have debug flags
* to catch a weird case where both are used, which shouldn't happen.
*/
#if ALPHA_TLASER
if (req->paddr & PAddrUncachedBit39) {
#else
if (req->paddr & PAddrUncachedBit43) {
#endif
// IPR memory space not implemented
if (PAddrIprSpace(req->paddr)) {
if (!req->xc->misspeculating()) {
switch (req->paddr) {
case ULL(0xFFFFF00188):
req->data = 0;
break;
default:
panic("IPR memory space not implemented! PA=%x\n",
req->paddr);
}
}
} else {
// mark request as uncacheable
req->flags |= UNCACHEABLE;
#if !ALPHA_TLASER
// Clear bits 42:35 of the physical address (10-2 in Tsunami manual)
req->paddr &= PAddrUncachedMask;
#endif
}
}
}
// insert a new TLB entry
void
AlphaTLB::insert(Addr addr, AlphaISA::PTE &pte)
{
AlphaISA::VAddr vaddr = addr;
if (table[nlu].valid) {
Addr oldvpn = table[nlu].tag;
PageTable::iterator i = lookupTable.find(oldvpn);
if (i == lookupTable.end())
panic("TLB entry not found in lookupTable");
int index;
while ((index = i->second) != nlu) {
if (table[index].tag != oldvpn)
panic("TLB entry not found in lookupTable");
++i;
}
DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);
lookupTable.erase(i);
}
DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vaddr.vpn(), pte.ppn);
table[nlu] = pte;
table[nlu].tag = vaddr.vpn();
table[nlu].valid = true;
lookupTable.insert(make_pair(vaddr.vpn(), nlu));
nextnlu();
}
void
AlphaTLB::flushAll()
{
DPRINTF(TLB, "flushAll\n");
memset(table, 0, sizeof(AlphaISA::PTE[size]));
lookupTable.clear();
nlu = 0;
}
void
AlphaTLB::flushProcesses()
{
PageTable::iterator i = lookupTable.begin();
PageTable::iterator end = lookupTable.end();
while (i != end) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
// we can't increment i after we erase it, so save a copy and
// increment it to get the next entry now
PageTable::iterator cur = i;
++i;
if (!pte->asma) {
DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
pte->valid = false;
lookupTable.erase(cur);
}
}
}
void
AlphaTLB::flushAddr(Addr addr, uint8_t asn)
{
AlphaISA::VAddr vaddr = addr;
PageTable::iterator i = lookupTable.find(vaddr.vpn());
if (i == lookupTable.end())
return;
while (i->first == vaddr.vpn()) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vaddr.vpn() == pte->tag && (pte->asma || pte->asn == asn)) {
DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vaddr.vpn(),
pte->ppn);
// invalidate this entry
pte->valid = false;
lookupTable.erase(i);
}
++i;
}
}
void
AlphaTLB::serialize(ostream &os)
{
SERIALIZE_SCALAR(size);
SERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
nameOut(os, csprintf("%s.PTE%d", name(), i));
table[i].serialize(os);
}
}
void
AlphaTLB::unserialize(Checkpoint *cp, const string &section)
{
UNSERIALIZE_SCALAR(size);
UNSERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
if (table[i].valid) {
lookupTable.insert(make_pair(table[i].tag, i));
}
}
}
///////////////////////////////////////////////////////////////////////
//
// Alpha ITB
//
AlphaITB::AlphaITB(const std::string &name, int size)
: AlphaTLB(name, size)
{}
void
AlphaITB::regStats()
{
hits
.name(name() + ".hits")
.desc("ITB hits");
misses
.name(name() + ".misses")
.desc("ITB misses");
acv
.name(name() + ".acv")
.desc("ITB acv");
accesses
.name(name() + ".accesses")
.desc("ITB accesses");
accesses = hits + misses;
}
void
AlphaITB::fault(Addr pc, ExecContext *xc) const
{
if (!xc->misspeculating()) {
xc->setMiscReg(AlphaISA::IPR_ITB_TAG, pc);
xc->setMiscReg(AlphaISA::IPR_IFAULT_VA_FORM,
xc->readMiscReg(AlphaISA::IPR_IVPTBR) |
(AlphaISA::VAddr(pc).vpn() << 3));
}
}
Fault
AlphaITB::translate(MemReqPtr &req) const
{
ExecContext *xc = req->xc;
if (AlphaISA::PcPAL(req->vaddr)) {
// strip off PAL PC marker (lsb is 1)
req->paddr = (req->vaddr & ~3) & PAddrImplMask;
hits++;
return NoFault;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr;
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req->vaddr, req->xc);
acv++;
return ItbAcvFault;
}
// VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
// VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
#if ALPHA_TLASER
if ((MCSR_SP(xc->readMiscReg(AlphaISA::IPR_MCSR)) & 2) &&
VAddrSpaceEV5(req->vaddr) == 2) {
#else
if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
#endif
// only valid in kernel mode
if (ICM_CM(xc->readMiscReg(AlphaISA::IPR_ICM)) !=
AlphaISA::mode_kernel) {
fault(req->vaddr, req->xc);
acv++;
return ItbAcvFault;
}
req->paddr = req->vaddr & PAddrImplMask;
#if !ALPHA_TLASER
// sign extend the physical address properly
if (req->paddr & PAddrUncachedBit40)
req->paddr |= ULL(0xf0000000000);
else
req->paddr &= ULL(0xffffffffff);
#endif
} else {
// not a physical address: need to look up pte
int asn = DTB_ASN_ASN(xc->readMiscReg(AlphaISA::IPR_DTB_ASN));
AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
asn);
if (!pte) {
fault(req->vaddr, req->xc);
misses++;
return ItbPageFault;
}
req->paddr = (pte->ppn << AlphaISA::PageShift) +
(AlphaISA::VAddr(req->vaddr).offset() & ~3);
// check permissions for this access
if (!(pte->xre &
(1 << ICM_CM(xc->readMiscReg(AlphaISA::IPR_ICM))))) {
// instruction access fault
fault(req->vaddr, req->xc);
acv++;
return ItbAcvFault;
}
hits++;
}
}
// check that the physical address is ok (catch bad physical addresses)
if (req->paddr & ~PAddrImplMask)
return MachineCheckFault;
checkCacheability(req);
return NoFault;
}
///////////////////////////////////////////////////////////////////////
//
// Alpha DTB
//
AlphaDTB::AlphaDTB(const std::string &name, int size)
: AlphaTLB(name, size)
{}
void
AlphaDTB::regStats()
{
read_hits
.name(name() + ".read_hits")
.desc("DTB read hits")
;
read_misses
.name(name() + ".read_misses")
.desc("DTB read misses")
;
read_acv
.name(name() + ".read_acv")
.desc("DTB read access violations")
;
read_accesses
.name(name() + ".read_accesses")
.desc("DTB read accesses")
;
write_hits
.name(name() + ".write_hits")
.desc("DTB write hits")
;
write_misses
.name(name() + ".write_misses")
.desc("DTB write misses")
;
write_acv
.name(name() + ".write_acv")
.desc("DTB write access violations")
;
write_accesses
.name(name() + ".write_accesses")
.desc("DTB write accesses")
;
hits
.name(name() + ".hits")
.desc("DTB hits")
;
misses
.name(name() + ".misses")
.desc("DTB misses")
;
acv
.name(name() + ".acv")
.desc("DTB access violations")
;
accesses
.name(name() + ".accesses")
.desc("DTB accesses")
;
hits = read_hits + write_hits;
misses = read_misses + write_misses;
acv = read_acv + write_acv;
accesses = read_accesses + write_accesses;
}
void
AlphaDTB::fault(MemReqPtr &req, uint64_t flags) const
{
ExecContext *xc = req->xc;
AlphaISA::VAddr vaddr = req->vaddr;
// Set fault address and flags. Even though we're modeling an
// EV5, we use the EV6 technique of not latching fault registers
// on VPTE loads (instead of locking the registers until IPR_VA is
// read, like the EV5). The EV6 approach is cleaner and seems to
// work with EV5 PAL code, but not the other way around.
if (!xc->misspeculating()
&& !(req->flags & VPTE) && !(req->flags & NO_FAULT)) {
// set VA register with faulting address
xc->setMiscReg(AlphaISA::IPR_VA, req->vaddr);
// set MM_STAT register flags
xc->setMiscReg(AlphaISA::IPR_MM_STAT,
(((Opcode(xc->getInst()) & 0x3f) << 11)
| ((Ra(xc->getInst()) & 0x1f) << 6)
| (flags & 0x3f)));
// set VA_FORM register with faulting formatted address
xc->setMiscReg(AlphaISA::IPR_VA_FORM,
xc->readMiscReg(AlphaISA::IPR_MVPTBR) | (vaddr.vpn() << 3));
}
}
Fault
AlphaDTB::translate(MemReqPtr &req, bool write) const
{
RegFile *regs = &req->xc->regs;
ExecContext *xc = req->xc;
Addr pc = regs->pc;
AlphaISA::mode_type mode =
(AlphaISA::mode_type)DTB_CM_CM(xc->readMiscReg(AlphaISA::IPR_DTB_CM));
/**
* Check for alignment faults
*/
if (req->vaddr & (req->size - 1)) {
fault(req, write ? MM_STAT_WR_MASK : 0);
DPRINTF(TLB, "Alignment Fault on %#x, size = %d", req->vaddr,
req->size);
return AlignmentFault;
}
if (pc & 0x1) {
mode = (req->flags & ALTMODE) ?
(AlphaISA::mode_type)ALT_MODE_AM(
xc->readMiscReg(AlphaISA::IPR_ALT_MODE))
: AlphaISA::mode_kernel;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr;
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req, (write ? MM_STAT_WR_MASK : 0) |
MM_STAT_BAD_VA_MASK |
MM_STAT_ACV_MASK);
if (write) { write_acv++; } else { read_acv++; }
return DtbPageFault;
}
// Check for "superpage" mapping
#if ALPHA_TLASER
if ((MCSR_SP(xc->readMiscReg(AlphaISA::IPR_MCSR)) & 2) &&
VAddrSpaceEV5(req->vaddr) == 2) {
#else
if (VAddrSpaceEV6(req->vaddr) == 0x7e) {
#endif
// only valid in kernel mode
if (DTB_CM_CM(xc->readMiscReg(AlphaISA::IPR_DTB_CM)) !=
AlphaISA::mode_kernel) {
fault(req, ((write ? MM_STAT_WR_MASK : 0) |
MM_STAT_ACV_MASK));
if (write) { write_acv++; } else { read_acv++; }
return DtbAcvFault;
}
req->paddr = req->vaddr & PAddrImplMask;
#if !ALPHA_TLASER
// sign extend the physical address properly
if (req->paddr & PAddrUncachedBit40)
req->paddr |= ULL(0xf0000000000);
else
req->paddr &= ULL(0xffffffffff);
#endif
} else {
if (write)
write_accesses++;
else
read_accesses++;
int asn = DTB_ASN_ASN(xc->readMiscReg(AlphaISA::IPR_DTB_ASN));
// not a physical address: need to look up pte
AlphaISA::PTE *pte = lookup(AlphaISA::VAddr(req->vaddr).vpn(),
asn);
if (!pte) {
// page fault
fault(req, (write ? MM_STAT_WR_MASK : 0) |
MM_STAT_DTB_MISS_MASK);
if (write) { write_misses++; } else { read_misses++; }
return (req->flags & VPTE) ? (Fault)PDtbMissFault : (Fault)NDtbMissFault;
}
req->paddr = (pte->ppn << AlphaISA::PageShift) +
AlphaISA::VAddr(req->vaddr).offset();
if (write) {
if (!(pte->xwe & MODE2MASK(mode))) {
// declare the instruction access fault
fault(req, MM_STAT_WR_MASK |
MM_STAT_ACV_MASK |
(pte->fonw ? MM_STAT_FONW_MASK : 0));
write_acv++;
return DtbPageFault;
}
if (pte->fonw) {
fault(req, MM_STAT_WR_MASK |
MM_STAT_FONW_MASK);
write_acv++;
return DtbPageFault;
}
} else {
if (!(pte->xre & MODE2MASK(mode))) {
fault(req, MM_STAT_ACV_MASK |
(pte->fonr ? MM_STAT_FONR_MASK : 0));
read_acv++;
return DtbAcvFault;
}
if (pte->fonr) {
fault(req, MM_STAT_FONR_MASK);
read_acv++;
return DtbPageFault;
}
}
}
if (write)
write_hits++;
else
read_hits++;
}
// check that the physical address is ok (catch bad physical addresses)
if (req->paddr & ~PAddrImplMask)
return MachineCheckFault;
checkCacheability(req);
return NoFault;
}
AlphaISA::PTE &
AlphaTLB::index(bool advance)
{
AlphaISA::PTE *pte = &table[nlu];
if (advance)
nextnlu();
return *pte;
}
DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB)
INIT_PARAM_DFLT(size, "TLB size", 48)
END_INIT_SIM_OBJECT_PARAMS(AlphaITB)
CREATE_SIM_OBJECT(AlphaITB)
{
return new AlphaITB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaITB", AlphaITB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
INIT_PARAM_DFLT(size, "TLB size", 64)
END_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
CREATE_SIM_OBJECT(AlphaDTB)
{
return new AlphaDTB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)