No description
6ebe8d863a
This patch resolves a bug with hardware prefetches. Before a hardware prefetch is sent towards the memory, the system generates a snoop request to check all caches above the prefetch generating cache for the presence of the prefetth target. If the prefetch target is found in the tags or the MSHRs of the upper caches, the cache sets the prefetchSquashed flag in the snoop packet. When the snoop packet returns with the prefetchSquashed flag set, the prefetch generating cache deallocates the MSHR reserved for the prefetch. If the prefetch target is found in the writeback buffer of the upper cache, the cache sets the memInhibit flag, which signals the prefetch generating cache to expect the data from the writeback. When the snoop packet returns with the memInhibitAsserted flag set, it marks the allocated MSHR as inService and waits for the data from the writeback. If the prefetch target is found in multiple upper level caches, specifically in the tags or MSHRs of one upper level cache and the writeback buffer of another, the snoop packet will return with both prefetchSquashed and memInhibitAsserted set, while the current code is not written to handle such an outcome. Current code checks for the prefetchSquashed flag first, if it finds the flag, it deallocates the reserved MSHR. This leads to assert failure when the data from the writeback appears at cache. In this fix, we simply switch the order of checks. We first check for memInhibitAsserted and then for prefetch squashed. |
||
---|---|---|
build_opts | ||
configs | ||
ext | ||
src | ||
system | ||
tests | ||
util | ||
.hgignore | ||
.hgtags | ||
COPYING | ||
LICENSE | ||
README | ||
SConstruct |
This is the gem5 simulator. The main website can be found at http://www.gem5.org A good starting point is http://www.gem5.org/Introduction, and for more information about building the simulator and getting started please see http://www.gem5.org/Documentation and http://www.gem5.org/Tutorials. To build gem5, you will need the following software: g++ or clang, Python (gem5 links in the Python interpreter), SCons, SWIG, zlib, m4, and lastly protobuf if you want trace capture and playback support. Please see http://www.gem5.org/Dependencies for more details concerning the minimum versions of the aforementioned tools. Once you have all dependencies resolved, type 'scons build/<ARCH>/gem5.opt' where ARCH is one of ALPHA, ARM, NULL, MIPS, POWER, SPARC, or X86. This will build an optimized version of the gem5 binary (gem5.opt) for the the specified architecture. See http://www.gem5.org/Build_System for more details and options. With the simulator built, have a look at http://www.gem5.org/Running_gem5 for more information on how to use gem5. The basic source release includes these subdirectories: - configs: example simulation configuration scripts - ext: less-common external packages needed to build gem5 - src: source code of the gem5 simulator - system: source for some optional system software for simulated systems - tests: regression tests - util: useful utility programs and files To run full-system simulations, you will need compiled system firmware (console and PALcode for Alpha), kernel binaries and one or more disk images. Please see the gem5 download page for these items at http://www.gem5.org/Download If you have questions, please send mail to gem5-users@gem5.org Enjoy using gem5 and please share your modifications and extensions.