This patch adds support for specifying multi-channel memory
configurations on the command line, e.g. 'se/fs.py
--mem-type=ddr3_1600_x64 --mem-channels=4'. To enable this, it
enhances the functionality of MemConfig and moves the existing
makeMultiChannel class method from SimpleDRAM to the support scripts.
The se/fs.py example scripts are updated to make use of the new
feature.
This patch changes the default parameter value of conf_table_reported
to match the common case. It also simplifies the regression and config
scripts to reflect this change.
This patch changes the data structure used for the DRAM read, write
and response queues from an STL list to deque. This optimisation is
based on the observation that the size is small (and fixed), and that
the structures are frequently iterated over in a linear fashion.
This patch implements basic write merging in the DRAM to avoid
redundant bursts. When a new access is added to the queue it is
compared against the existing entries, and if it is either
intersecting or immediately succeeding/preceeding an existing item it
is merged.
There is currently no attempt made at avoiding iterating over the
existing items in determining whether merging is possible or not.
This patch gets rid of bytesPerCacheLine parameter and makes the DRAM
configuration separate from cache line size. Instead of
bytesPerCacheLine, we define a parameter for the DRAM called
burst_length. The burst_length parameter shows the length of a DRAM
device burst in bits. Also, lines_per_rowbuffer is replaced with
device_rowbuffer_size to improve code portablity.
This patch adds a burst length in beats for each memory type, an
interface width for each memory type, and the memory controller model
is extended to reason about "system" packets vs "dram" packets and
assemble the responses properly. It means that system packets larger
than a full burst are split into multiple dram packets.
This patch adds a packet queue in SimpleMemory to avoid using the
packet queue in the port (and thus have no involvement in the flow
control). The port queue was bound to 100 packets, and as the
SimpleMemory is modelling both a controller and an actual RAM, it
potentially has a large number of packets in flight. There is
currently no limit on the number of packets in the memory controller,
but this could easily be added in a follow-on patch.
As a result of the added internal storage, the functional access and
draining is updated. Some minor cleaning up and renaming has also been
done.
The memtest regression changes as a result of this patch and the stats
will be updated.
Some of the code in StateMachine.py file is added to all the controllers and
is independent of the controller definition. This code is being moved to the
AbstractController class which is the parent class of all controllers.
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
This code seems not to be of any use now. There is no path in the simulator
that allows for reconfiguring the network. A better approach would be to
take a checkpoint and start the simulation from the checkpoint with the new
configuration.
This patch reorganizes the cache tags to allow more flexibility to
implement new replacement policies. The base tags class is now a
clocked object so that derived classes can use a clock if they need
one. Also having deriving from SimObject allows specialized Tag
classes to be swapped in/out in .py files.
The cache set is now templatized to allow it to contain customized
cache blocks with additional informaiton. This involved moving code to
the .hh file and removing cacheset.cc.
The statistics belonging to the cache tags are now including ".tags"
in their name. Hence, the stats need an update to reflect the change
in naming.
This patch adds the notion of source- and derived-clock domains to the
ClockedObjects. As such, all clock information is moved to the clock
domain, and the ClockedObjects are grouped into domains.
The clock domains are either source domains, with a specific clock
period, or derived domains that have a parent domain and a divider
(potentially chained). For piece of logic that runs at a derived clock
(a ratio of the clock its parent is running at) the necessary derived
clock domain is created from its corresponding parent clock
domain. For now, the derived clock domain only supports a divider,
thus ensuring a lower speed compared to its parent. Multiplier
functionality implies a PLL logic that has not been modelled yet
(create a separate clock instead).
The clock domains should be used as a mechanism to provide a
controllable clock source that affects clock for every clocked object
lying beneath it. The clock of the domain can (in a future patch) be
controlled by a handler responsible for dynamic frequency scaling of
the respective clock domains.
All the config scripts have been retro-fitted with clock domains. For
the System a default SrcClockDomain is created. For CPUs that run at a
different speed than the system, there is a seperate clock domain
created. This domain incorporates the CPU and the associated
caches. As before, Ruby runs under its own clock domain.
The clock period of all domains are pre-computed, such that no virtual
functions or multiplications are needed when calling
clockPeriod. Instead, the clock period is pre-computed when any
changes occur. For this to be possible, each clock domain tracks its
children.
This patch removes the explicit setting of the clock period for
certain instances of CoherentBus, NonCoherentBus and IOCache where the
specified clock is same as the default value of the system clock. As
all the values used are the defaults, there are no performance
changes. There are similar cases where the toL2Bus is set to use the
parent CPU clock which is already the default behaviour.
The main motivation for these simplifications is to ease the
introduction of clock domains.
This patch does a bit of tidying up in the bridge code, adding const
where appropriate and also removing redundant checks and adding a few
new ones.
There are no changes to the behaviour of any regressions.
This patch fixes the CommMonitor local variable names, and also
introduces a variable to capture if it expects to see a response. The
latter check considers both needsResponse and memInhibitAsserted.
This patch fixes an outstanding issue in the cache timing calculations
where an atomic access returned a time in Cycles, but the port
forwarded it on as if it was in Ticks.
A separate patch will update the regression stats.
This patch changes the updards snoop packet to avoid allocating and
later deleting it. As the code executes in 0 time and the lifetime of
the packet does not extend beyond the block there is no reason to heap
allocate it.
This patch adds separate actions for requests that missed in the local cache
and messages were sent out to get the requested line. These separate actions
are required for differentiating between the hit and miss latencies in the
statistics collected.
This patch adds separate actions for requests that missed in the local cache
and messages were sent out to get the requested line. These separate actions
are required for differentiating between the hit and miss latencies in the
statistics collected.
The patch started of with removing the global variables from the profiler for
profiling the miss latency of requests made to the cache. The corrresponding
histograms have been moved to the Sequencer. These are combined together when
the histograms are printed. Separate histograms are now maintained for
tracking latency of all requests together, of hits only and of misses only.
A particular set of histograms used to use the type GenericMachineType defined
in one of the protocol files. This patch removes this type. Now, everything
that relied on this type would use MachineType instead. To do this, SLICC has
been changed so that multiple machine types can be declared by a controller
in its preamble.
This patch removes the following three files: RubySlicc_Profiler.sm,
RubySlicc_Profiler_interface.cc and RubySlicc_Profiler_interface.hh.
Only one function prototyped in the file RubySlicc_Profiler.sm. Rest of the
code appearing in any of these files is not in use. Therefore, these files
are being removed.
That one single function, profileMsgDelay(), is being moved to the protocol
files where it is in use. If we need any of these deleted functions, I think
the right way to make them visible is to have the AbstractController class in
a .sm and let the controller state machine inherit from this class. The
AbstractController class can then have the prototypes of these profiling
functions in its definition.
2013-06-24 08:59:08 -05:00
Joel Hestness ext:(%2C%20Nilay%20Vaish%20%3Cnilay%40cs.wisc.edu%3E)
The m_size variable attempted to track m_prio_heap.size(), but it did so
incorrectly due to the functions reanalyzeMessages and reanalyzeAllMessages().
Since this variable is intended to track m_prio_heap.size(), we can simply
replace instances where m_size is referenced with m_prio_heap.size(), which
has the added bonus of removing the need for m_size.
Note: This patch also removes an extraneous DPRINTF format string designator
from reanalyzeAllMessages()
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Previously, .sm files were allowed to use the same name for a type and a
variable. This is unnecessarily confusing and has some bad side effects, like
not being able to declare later variables in the same scope with the same type.
This causes the compiler to complain and die on things like Address Address.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Change all occurrances of Address as a variable name to instead use Addr.
Address is an allowed name in slicc even when Address is also being used as a
type, leading to declarations of "Address Address". While this works, it
prevents adding another field of type Address because the compiler then thinks
Address is a variable name, not type.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
Reuse the address finalization code in the TLB instead of replicating
it when handling MMIO. This patch also adds support for injecting
memory mapped IPR requests into the memory system.
This patch removes per processor cycle count, histogram for filter stats,
histogram for multicasts, histogram for prefetch wait, some function
prototypes that do not have definitions.
The Profiler class does not need an event for dumping statistics
periodically. This is because there is a method for dumping statistics
for all the sim objects periodically. Since Ruby is a sim object, its
statistics are also included.
This moves event and transition count statistics for cache controllers to
gem5's statistics. It does the same for the statistics associated with the
memory controller in ruby.
All the cache/directory/dma controllers individually collect the event and
transition counts. A callback function, collateStats(), has been added that
is invoked on the controller version 0 of each controller class. This
function adds all the individual controller statistics to a vector
variables. All the code for registering the statistical variables and
collating them is generated by SLICC. The patch removes the files
*_Profiler.{cc,hh} and *_ProfileDumper.{cc,hh} which were earlier used for
collecting and dumping statistics respectively.
This patch changes the class names of the variuos DRAM configurations
to better reflect what memory they are based on. The speed and
interface width is now part of the name, and also the alias that is
used to select them on the command line.
Some minor changes are done to the actual parameters, to better
reflect the named configurations. As a result of these changes the
regressions change slightly and the stats will be bumped in a separate
patch.
This patch adds a histogram to track how many bytes are accessed in an
open row before it is closed. This metric is useful in characterising
a workload and the efficiency of the DRAM scheduler. For example, a
DDR3-1600 device requires 44 cycles (tRC) before it can activate
another row in the same bank. For a x32 interface (8 bytes per cycle)
that means 8 x 44 = 352 bytes must be transferred to hide the
preparation time.
This patch adds a frontend and backend static latency to the DRAM
controller by delaying the responses. Two parameters expressing the
frontend and backend contributions in absolute time are added to the
controller, and the appropriate latency is added to the responses when
adding them to the (infinite) queued port for sending.
For writes and reads that hit in the write buffer, only the frontend
latency is added. For reads that are serviced by the DRAM, the static
latency is the sum of the pipeline latencies of the entire frontend,
backend and PHY. The default values are chosen based on having roughly
10 pipeline stages in total at 500 MHz.
In the future, it would be sensible to make the controller use its
clock and convert these latencies (and a few of the DRAM timings) to
cycles.
This patch does some minor tidying up of the MSHR and MSHRQueue. The
clean up started as part of some ad-hoc tracing and debugging, but
seems worthwhile enough to go in as a separate patch.
The highlights of the changes are reduced scoping (private) members
where possible, avoiding redundant new/delete, and constructor
initialisation to please static code analyzers.
This patch introduces a mirrored internal snoop port to facilitate
easy addition of flow control for the snoop responses that are turned
into normal responses on their return. To perform this, the slave
ports of the coherent bus are wrapped in internal master ports that
are passed as the source ports to the response layer in question.
As a result of this patch, there is more contention for the response
resources, and as such system performance will decrease slightly.
A consequence of the mirrored internal port is that the port the bus
tells to retry (the internal one) and the port actually retrying (the
mirrored) one are not the same. Thus, the existing check in tryTiming
is not longer correct. In fact, the test is redundant as the layer is
only in the retry state while calling sendRetry on the waiting port,
and if the latter does not immediately call the bus then the retry
state is left. Consequently the check is removed.
This patch makes the buses multi layered, and effectively creates a
crossbar structure with distributed contention ports at the
destination ports. Before this patch, a bus could have a single
request, response and snoop response in flight at any time, and with
these changes there can be as many requests as connected slaves (bus
master ports), and as many responses as connected masters (bus slave
ports).
Together with address interleaving, this patch enables us to create
high-throughput memory interconnects, e.g. 50+ GByte/s.
This patch makes the flow control and state updates of the coherent
bus more clear by separating the two cases, i.e. forward as a snoop
response, or turn it into a normal response.
With this change it is also more clear what resources are being
occupied, and that we effectively bypass the busy check for the second
case. As a result of the change in resource usage some stats change.
This patch does some minor housekeeping on the bus code, removing
redundant code, and moving the extraction of the destination id to the
top of the functions using it.
This patch adds a basic set of stats which are hard to impossible to
implement using only communication monitors, and are needed for
insight such as bus utilization, transactions through the bus etc.
Stats added include throughput and transaction distribution, and also
a two-dimensional vector capturing how many packets and how much data
is exchanged between the masters and slaves connected to the bus.
This patch changes the set used to track outstanding requests to an
unordered set (part of C++11 STL). There is no need to maintain the
order, and hopefully there might even be a small performance benefit.