Commit graph

11 commits

Author SHA1 Message Date
Andreas Hansson
1c321b8847 Regression: Use CPU clock and 32-byte width for L1-L2 bus
This patch changes the CoherentBus between the L1s and L2 to use the
CPU clock and also four times the width compared to the default
bus. The parameters are not intending to fit every single scenario,
but rather serve as a better startingpoint than what we previously
had.

Note that the scripts that do not use the addTwoLevelCacheHiearchy are
not affected by this change.

A separate patch will update the stats.
2012-10-15 08:08:08 -04:00
Andreas Hansson
0d32940711 Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.

--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 13:30:04 -04:00
Nilay Vaish
c80af04d7d x86: Fix switching of CPUs
This patch prevents creation of interrupt controller for
cpus that will be switched in later
2012-03-01 11:37:02 -06:00
Andreas Hansson
ac91f90145 Script: Fix the scripts that use the num_cpus cache parameter
This patch merely removes the use of the num_cpus cache parameter
which no longer exists after the introduction of the masterIds. The
affected scripts fail when trying to set the parameter. Note that this
patch does not update the regression stats.
2012-02-14 12:11:18 -05:00
Andreas Hansson
5a9a743cfc MEM: Introduce the master/slave port roles in the Python classes
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
2012-02-13 06:43:09 -05:00
Ronald Dreslinski
fc7cf40de6 configs: A more realistic configuration of an ARM-like processor 2012-01-26 14:53:48 -05:00
Korey Sewell
981e1dd7ee configs: cache: add cache line size option 2011-02-23 14:26:55 -05:00
Korey Sewell
fb92578415 configs: set default cache params
It's confusing (especially to new users), when you are setting some standard
parameters (as defined in Options.py) and they aren't reflected in the simulations
so we might as well link the settings in CacheConfig.py to those in Options.py
2011-02-23 01:01:46 -05:00
Gabe Black
00f24ae92c Config: Keep track of uncached and cached ports separately.
This makes sure that the address ranges requested for caches and uncached ports
don't conflict with each other, and that accesses which are always uncached
(message signaled interrupts for instance) don't waste time passing through
caches.
2011-02-03 20:23:00 -08:00
Gabe Black
119f5f8e94 X86: Add L1 caches for the TLB walkers.
Small L1 caches are connected to the TLB walkers when caches are used. This
allows them to participate in the coherence protocol properly.
2011-02-01 18:28:41 -08:00
Lisa Hsu
a70f70ccbf configs: pull out cache configuration code from se.py and fs.py.
Most of these frontend configurations share cache configuration code, pull it out so that
changes to caches don't have to require changing multiple config files.
2010-02-25 10:13:40 -08:00