This patch does several things. First, the counter for fully busy cycles for a
controller is now kept with in the controller, instead of being part of the profiler.
Second, the topology class no longer keeps an array of controllers which was only
used for printing stats. Instead, ruby system will now ask each controller to print
the stats. Thirdly, the statistical variable for recording how many different types
were created is being moved in to the controller from the profiler. Note that for
printing, the profiler will collate results from different controllers.
The number of bits required for an address was set to floorLog2(memory size).
This is correct under the assumption that the memory size is a power of 2,
which is not always true. Hence, floorLog2 is being replaced with ceilLog2.
This patch adds a _curTick variable to an eventq. This variable is updated
whenever an event is serviced in function serviceOne(), or all events upto
a particular time are processed in function serviceEvents(). This change
helps when there are eventqs that do not make use of curTick for scheduling
events.
Recent changes to functionalRead() in the memory system was not correct.
The change allowed for returning data from the first message found in
the buffers of the memory system. This is not correct since it is possible
that a timing message has data from an older state of the block.
The changes are being reverted.
This patch adds support to ruby so that the statistics maintained by ruby
are reset/dumped when the statistics for the rest of the system are
reset/dumped. For resetting the statistics, ruby now provides the
resetStats() function that a sim object can provide. As a consequence, the
clearStats() function has been removed from RubySystem. For dumping stats,
Ruby now adds a callback event to the dumpStatsQueue. The exit callback that
ruby used to add earlier is being removed.
Created by: Hamid Reza Khaleghzadeh.
Improved by: Lluc Alvarez, Nilay Vaish
Committed by: Nilay Vaish
This patch adds support to different entities in the ruby memory system
for more reliable functional read/write accesses. Only the simple network
has been augmented as of now. Later on Garnet will also support functional
accesses.
The patch adds functional access code to all the different types of messages
that protocols can send around. These messages are functionally accessed
by going through the buffers maintained by the network entities.
The patch also rectifies some of the bugs found in coherence protocols while
testing the patch.
With this patch applied, functional writes always succeed. But functional
reads can still fail.
Currently the Ruby System maintains pointer to only one of the memory
controllers. But there can be multiple controllers in the system. This
patch adds a vector of memory controllers.
Ruby system was recently converted to a clocked object. Such objects maintain
state related to the time that has passed so far. During the cache warmup, Ruby
system changes its own time and the global time. Later on, the global time is
restored. So Ruby system also needs to reset its own time.
This patch moves the code for functional accesses to ruby system. This is
because the subsequent patches add support for making functional accesses
to the messages in the interconnect. Making those accesses from the ruby port
would be cumbersome.
This patch removes printConfig() functions from all structures in Ruby.
Most of the information is already part of config.ini, and where ever it
is not, it would become in due course.
Fixes checkpointing with respect to lost events after swapping event queues.
Also adds DPRINTFs to better understand what's going on when Ruby serializes
and unserializes.
This patch resurrects ruby's cache warmup capability. It essentially
makes use of all the infrastructure that was added to the controllers,
memories and the cache recorder.
This patch rpovides functional access support in Ruby. Currently only
the M5Port of RubyPort supports functional accesses. The support for
functional through the PioPort will be added as a separate patch.
The main purpose for clearing stats in the unserialize process is so
that the profiler can correctly set its start time to the unserialized
value of curTick.
In addition to obvious changes, this required a slight change to the slicc
grammar to allow types with :: in them. Otherwise slicc barfs on std::string
which we need for the headers that slicc generates.
This patch includes a rather substantial change to the memory controller
profiler in order to work with the new configuration system. Most
noteably, the mem_cntrl_profiler no longer uses a string map, but instead
a vector. Eventually this support should be removed from the main
profiler and go into a separate object. Each memory controller should have
a pointer to that new mem_cntrl profile object.
The necessary companion conversion of Ruby objects generated by SLICC
are converted to M5 SimObjects in the following patch, so this patch
alone does not compile.
Conversion of Garnet network models is also handled in a separate
patch; that code is temporarily disabled from compiling to allow
testing of interim code.
Caches are now responsible for their own statistic gathering. This
requires a direct callback from the protocol on misses, and so all
future protocols need to take this into account.
This was done with an automated process, so there could be things that were
done in this tree in the past that didn't make it. One known regression
is that atomic memory operations do not seem to work properly anymore.
This changeset also includes a lot of work from Derek Hower <drh5@cs.wisc.edu>
RubyMemory is now both a driver for Ruby and a port for M5. Changed
makeRequest/hitCallback interface. Brought packets (superficially)
into the sequencer. Modified tester infrastructure to be packet based.
and Ruby can be used together through the example ruby_se.py
script. SPARC parallel applications work, and the timing *seems* right
from combined M5/Ruby debug traces. To run,
% build/ALPHA_SE/m5.debug configs/example/ruby_se.py -c
tests/test-progs/hello/bin/alpha/linux/hello -n 4 -t
This basically means changing all #include statements and changing
autogenerated code so that it generates the correct paths. Because
slicc generates #includes, I had to hard code the include paths to
mem/protocol.
1) Removing files from the ruby build left some unresovled
symbols. Those have been fixed.
2) Most of the dependencies on Simics data types and the simics
interface files have been removed.
3) Almost all mention of opal is gone.
4) Huge chunks of LogTM are now gone.
5) Handling 1-4 left ~hundreds of unresolved references, which were
fixed, yielding a snowball effect (and the massive size of this
delta).