gem5/src/mem/ruby/system/System.cc
Nilay Vaish bf59a9298f Ruby: Resurrect Cache Warmup Capability
This patch resurrects ruby's cache warmup capability. It essentially
makes use of all the infrastructure that was added to the controllers,
memories and the cache recorder.
2012-01-11 13:48:48 -06:00

481 lines
14 KiB
C++

/*
* Copyright (c) 1999-2011 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <fcntl.h>
#include <zlib.h>
#include <cstdio>
#include "base/intmath.hh"
#include "base/output.hh"
#include "debug/RubySystem.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/network/Network.hh"
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/system/System.hh"
#include "sim/simulate.hh"
using namespace std;
int RubySystem::m_random_seed;
bool RubySystem::m_randomization;
Tick RubySystem::m_clock;
int RubySystem::m_block_size_bytes;
int RubySystem::m_block_size_bits;
uint64 RubySystem::m_memory_size_bytes;
int RubySystem::m_memory_size_bits;
Network* RubySystem::m_network_ptr;
Profiler* RubySystem::m_profiler_ptr;
MemoryVector* RubySystem::m_mem_vec_ptr;
RubySystem::RubySystem(const Params *p)
: SimObject(p)
{
if (g_system_ptr != NULL)
fatal("Only one RubySystem object currently allowed.\n");
m_random_seed = p->random_seed;
srandom(m_random_seed);
m_randomization = p->randomization;
m_clock = p->clock;
m_block_size_bytes = p->block_size_bytes;
assert(isPowerOf2(m_block_size_bytes));
m_block_size_bits = floorLog2(m_block_size_bytes);
m_memory_size_bytes = p->mem_size;
if (m_memory_size_bytes == 0) {
m_memory_size_bits = 0;
} else {
m_memory_size_bits = floorLog2(m_memory_size_bytes);
}
g_eventQueue_ptr = new RubyEventQueue(p->eventq, m_clock);
g_system_ptr = this;
if (p->no_mem_vec) {
m_mem_vec_ptr = NULL;
} else {
m_mem_vec_ptr = new MemoryVector;
m_mem_vec_ptr->resize(m_memory_size_bytes);
}
//
// Print ruby configuration and stats at exit
//
RubyExitCallback* rubyExitCB = new RubyExitCallback(p->stats_filename);
registerExitCallback(rubyExitCB);
m_warmup_enabled = false;
m_cooldown_enabled = false;
}
void
RubySystem::init()
{
m_profiler_ptr->clearStats();
}
void
RubySystem::registerNetwork(Network* network_ptr)
{
m_network_ptr = network_ptr;
}
void
RubySystem::registerProfiler(Profiler* profiler_ptr)
{
m_profiler_ptr = profiler_ptr;
}
void
RubySystem::registerAbstractController(AbstractController* cntrl)
{
m_abs_cntrl_vec.push_back(cntrl);
}
void
RubySystem::registerSparseMemory(SparseMemory* s)
{
m_sparse_memory_vector.push_back(s);
}
RubySystem::~RubySystem()
{
delete m_network_ptr;
delete m_profiler_ptr;
if (m_mem_vec_ptr)
delete m_mem_vec_ptr;
}
void
RubySystem::printSystemConfig(ostream & out)
{
out << "RubySystem config:" << endl
<< " random_seed: " << m_random_seed << endl
<< " randomization: " << m_randomization << endl
<< " cycle_period: " << m_clock << endl
<< " block_size_bytes: " << m_block_size_bytes << endl
<< " block_size_bits: " << m_block_size_bits << endl
<< " memory_size_bytes: " << m_memory_size_bytes << endl
<< " memory_size_bits: " << m_memory_size_bits << endl;
}
void
RubySystem::printConfig(ostream& out)
{
out << "\n================ Begin RubySystem Configuration Print ================\n\n";
printSystemConfig(out);
m_network_ptr->printConfig(out);
m_profiler_ptr->printConfig(out);
out << "\n================ End RubySystem Configuration Print ================\n\n";
}
void
RubySystem::printStats(ostream& out)
{
const time_t T = time(NULL);
tm *localTime = localtime(&T);
char buf[100];
strftime(buf, 100, "%b/%d/%Y %H:%M:%S", localTime);
out << "Real time: " << buf << endl;
m_profiler_ptr->printStats(out);
m_network_ptr->printStats(out);
}
void
RubySystem::writeCompressedTrace(uint8* raw_data, string filename,
uint64 uncompressed_trace_size)
{
// Create the checkpoint file for the memory
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open memory trace file '%s'\n", filename);
}
gzFile compressedMemory = gzdopen(fd, "wb");
if (compressedMemory == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) !=
uncompressed_trace_size) {
fatal("Write failed on memory trace file '%s'\n", filename);
}
if (gzclose(compressedMemory)) {
fatal("Close failed on memory trace file '%s'\n", filename);
}
delete raw_data;
}
void
RubySystem::serialize(std::ostream &os)
{
m_cooldown_enabled = true;
vector<Sequencer*> sequencer_map;
Sequencer* sequencer_ptr = NULL;
int cntrl_id = -1;
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
if (sequencer_ptr == NULL) {
sequencer_ptr = sequencer_map[cntrl];
cntrl_id = cntrl;
}
}
assert(sequencer_ptr != NULL);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
if (sequencer_map[cntrl] == NULL) {
sequencer_map[cntrl] = sequencer_ptr;
}
}
// Create the CacheRecorder and record the cache trace
m_cache_recorder = new CacheRecorder(NULL, 0, sequencer_map);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder);
}
// save the current tick value
Tick curtick_original = curTick();
// save the event queue head
Event* eventq_head = eventq->replaceHead(NULL);
// Schedule an event to start cache cooldown
RubyEvent* e = new RubyEvent(this);
schedule(e,curTick());
simulate();
// Restore eventq head
eventq_head = eventq->replaceHead(eventq_head);
// Restore curTick
curTick(curtick_original);
uint8* raw_data = NULL;
if (m_mem_vec_ptr != NULL) {
uint64 memory_trace_size = m_mem_vec_ptr->collatePages(raw_data);
string memory_trace_file = name() + ".memory.gz";
writeCompressedTrace(raw_data, memory_trace_file,
memory_trace_size);
SERIALIZE_SCALAR(memory_trace_file);
SERIALIZE_SCALAR(memory_trace_size);
} else {
for (int i = 0; i < m_sparse_memory_vector.size(); ++i) {
m_sparse_memory_vector[i]->recordBlocks(cntrl_id,
m_cache_recorder);
}
}
// Aggergate the trace entries together into a single array
raw_data = new uint8_t[4096];
uint64 cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data,
4096);
string cache_trace_file = name() + ".cache.gz";
writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size);
SERIALIZE_SCALAR(cache_trace_file);
SERIALIZE_SCALAR(cache_trace_size);
m_cooldown_enabled = false;
}
void
RubySystem::readCompressedTrace(string filename, uint8*& raw_data,
uint64& uncompressed_trace_size)
{
// Read the trace file
gzFile compressedTrace;
// trace file
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Unable to open trace file %s", filename);
}
compressedTrace = gzdopen(fd, "rb");
if (compressedTrace == NULL) {
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
}
raw_data = new uint8_t[uncompressed_trace_size];
if (gzread(compressedTrace, raw_data, uncompressed_trace_size) <
uncompressed_trace_size) {
fatal("Unable to read complete trace from file %s\n", filename);
}
if (gzclose(compressedTrace)) {
fatal("Failed to close cache trace file '%s'\n", filename);
}
}
void
RubySystem::unserialize(Checkpoint *cp, const string &section)
{
//
// The main purpose for clearing stats in the unserialize process is so
// that the profiler can correctly set its start time to the unserialized
// value of curTick()
//
clearStats();
uint8* uncompressed_trace = NULL;
if (m_mem_vec_ptr != NULL) {
string memory_trace_file;
uint64 memory_trace_size = 0;
UNSERIALIZE_SCALAR(memory_trace_file);
UNSERIALIZE_SCALAR(memory_trace_size);
memory_trace_file = cp->cptDir + "/" + memory_trace_file;
readCompressedTrace(memory_trace_file, uncompressed_trace,
memory_trace_size);
m_mem_vec_ptr->populatePages(uncompressed_trace);
delete uncompressed_trace;
uncompressed_trace = NULL;
}
string cache_trace_file;
uint64 cache_trace_size = 0;
UNSERIALIZE_SCALAR(cache_trace_file);
UNSERIALIZE_SCALAR(cache_trace_size);
cache_trace_file = cp->cptDir + "/" + cache_trace_file;
readCompressedTrace(cache_trace_file, uncompressed_trace,
cache_trace_size);
m_warmup_enabled = true;
vector<Sequencer*> sequencer_map;
Sequencer* t = NULL;
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
if(t == NULL) t = sequencer_map[cntrl];
}
assert(t != NULL);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
if (sequencer_map[cntrl] == NULL) {
sequencer_map[cntrl] = t;
}
}
m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size,
sequencer_map);
}
void
RubySystem::startup()
{
if (m_warmup_enabled) {
// save the current tick value
Tick curtick_original = curTick();
// save the event queue head
Event* eventq_head = eventq->replaceHead(NULL);
// set curTick to 0
curTick(0);
// Schedule an event to start cache warmup
RubyEvent* e = new RubyEvent(this);
schedule(e,curTick());
simulate();
delete m_cache_recorder;
m_cache_recorder = NULL;
m_warmup_enabled = false;
// Restore eventq head
eventq_head = eventq->replaceHead(eventq_head);
// Restore curTick
curTick(curtick_original);
}
}
void
RubySystem::RubyEvent::process()
{
if (ruby_system->m_warmup_enabled) {
ruby_system->m_cache_recorder->enqueueNextFetchRequest();
} else if (ruby_system->m_cooldown_enabled) {
ruby_system->m_cache_recorder->enqueueNextFlushRequest();
}
}
void
RubySystem::clearStats() const
{
m_profiler_ptr->clearStats();
m_network_ptr->clearStats();
}
#ifdef CHECK_COHERENCE
// This code will check for cases if the given cache block is exclusive in
// one node and shared in another-- a coherence violation
//
// To use, the SLICC specification must call sequencer.checkCoherence(address)
// when the controller changes to a state with new permissions. Do this
// in setState. The SLICC spec must also define methods "isBlockShared"
// and "isBlockExclusive" that are specific to that protocol
//
void
RubySystem::checkGlobalCoherenceInvariant(const Address& addr)
{
#if 0
NodeID exclusive = -1;
bool sharedDetected = false;
NodeID lastShared = -1;
for (int i = 0; i < m_chip_vector.size(); i++) {
if (m_chip_vector[i]->isBlockExclusive(addr)) {
if (exclusive != -1) {
// coherence violation
WARN_EXPR(exclusive);
WARN_EXPR(m_chip_vector[i]->getID());
WARN_EXPR(addr);
WARN_EXPR(g_eventQueue_ptr->getTime());
ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips");
} else if (sharedDetected) {
WARN_EXPR(lastShared);
WARN_EXPR(m_chip_vector[i]->getID());
WARN_EXPR(addr);
WARN_EXPR(g_eventQueue_ptr->getTime());
ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
} else {
exclusive = m_chip_vector[i]->getID();
}
} else if (m_chip_vector[i]->isBlockShared(addr)) {
sharedDetected = true;
lastShared = m_chip_vector[i]->getID();
if (exclusive != -1) {
WARN_EXPR(lastShared);
WARN_EXPR(exclusive);
WARN_EXPR(addr);
WARN_EXPR(g_eventQueue_ptr->getTime());
ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
}
}
}
#endif
}
#endif
RubySystem *
RubySystemParams::create()
{
return new RubySystem(this);
}
/**
* virtual process function that is invoked when the callback
* queue is executed.
*/
void
RubyExitCallback::process()
{
std::ostream *os = simout.create(stats_filename);
RubySystem::printConfig(*os);
*os << endl;
RubySystem::printStats(*os);
}