This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
This was being done in read(), but if readBytes was called directly it
wouldn't happen. Also, instead of setting the memory blob being read to -1
which would (I believe) require using memset with -1 as a parameter, this now
uses bzero. It's hoped that it's more specialized behavior will make it
slightly faster.
bkt size isn't evenly divisible by max-min and it would round down,
it's possible to sample a distribution and have no place to put the sample.
When this case occured the simulator would assert.
This patch allows messages to be stalled in their input buffers and wait
until a corresponding address changes state. In order to make this work,
all in_ports must be ranked in order of dependence and those in_ports that
may unblock an address, must wake up the stalled messages. Alot of this
complexity is handled in slicc and the specification files simply
annotate the in_ports.
--HG--
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/StallAndWaitStatementAST.py
rename : src/mem/slicc/ast/CheckAllocateStatementAST.py => src/mem/slicc/ast/WakeUpDependentsStatementAST.py
Patch allows each individual message buffer to have different recycle latencies
and allows the overall recycle latency to be specified at the cmd line. The
patch also adds profiling info to make sure no one processor's requests are
recycled too much.
The main purpose for clearing stats in the unserialize process is so
that the profiler can correctly set its start time to the unserialized
value of curTick.
This patch allows one to disable migratory sharing for those cache blocks that
are accessed by atomic requests. While the implementations are different
between the token and hammer protocols, the motivation is the same. For
Alpha, LLSC semantics expect that normal loads do not unlock cache blocks that
have been locked by LL accesses. Therefore, locked blocks should not transfer
write permissions when responding to these load requests. Instead, only they
only transfer read permissions so that the subsequent SC access can possibly
succeed.
Added drain functions to the RTC and 8254 timer so that periodic interrupts
stop when the system is draining. This patch is needed to checkpoint in
timing mode. Otherwise under certain situations, the event queue will never
be completely empty.
This patch fixes several bugs related to previous inconsistent assumptions on
how many tokens the Owner had. Mike Marty should have fixes these bugs years
ago. :)
Previously, the MOESI_hammer protocol calculated the same latency for L1 and
L2 hits. This was because the protocol was written using the old ruby
assumption that L1 hits used the sequencer fast path. Since ruby no longer
uses the fast-path, the protocol delays L2 hits by placing them on the
trigger queue.
The previous slower ruby latencies created a mismatch between the faster M5
cpu models and the much slower ruby memory system. Specifically smp
interrupts were much slower and infrequent, as well as cpus moving in and out
of spin locks. The result was many cpus were idle for large periods of time.
These changes fix the latency mismatch.
This patch adds back to ruby the capability to understand the response time
for messages that hit in different levels of the cache heirarchy.
Specifically add support for the MI_example, MOESI_hammer, and MOESI_CMP_token
protocols.
This patch adds DMA testing to the Memtester and is inherits many changes from
Polina's old tester_dma_extension patch. Since Ruby does not work in atomic
mode, the atomic mode options are removed.
This patch attaches ruby objects to the system before the topology is
created so that their simobject names read their meaningful variable
names instead of their topology name.