This patch adds the config ini string as a tooltip that can be
displayed in most browsers rendering the resulting svg. Certain
characters are modified for HTML output.
Tested on chrome and firefox.
This patch is adding a splash of colour to the dot output to make it
easier to distinguish objects of different types. As a bonus, the
pastel-colour palette also makes the output look like a something from
the 21st century.
This patch adds the class name to the label, creates some more space
by increasing the rank separation, and additionally outputs the graph
as an editable SVG in addition to the PDF.
This patch makes it possible to once again build gem5 without any
ISA. The main purpose is to enable work around the interconnect and
memory system without having to build any CPU models or device models.
The regress script is updated to include the NULL ISA target. Currently
no regressions make use of it, but all the testers could (and perhaps
should) transition to it.
--HG--
rename : build_opts/NOISA => build_opts/NULL
rename : src/arch/noisa/SConsopts => src/arch/null/SConsopts
rename : src/arch/noisa/cpu_dummy.hh => src/arch/null/cpu_dummy.hh
rename : src/cpu/intr_control.cc => src/cpu/intr_control_noisa.cc
The branch predictor is guarded by having either the in-order or
out-of-order CPU as one of the available CPU models and therefore
should not be used in the BaseCPU. This patch moves the parameter to
the relevant CPU classes.
This patch is a first step to getting NOISA working again. A number of
redundant includes make life more difficult than it has to be and this
patch simply removes them. There are also some redundant forward
declarations removed.
This patch moves the system virtual port proxy to the Alpha system
only to make the resurrection of the NOISA slightly less
painful. Alpha is the only ISA that is actually using it.
This patch changes the SConscript to build gem5 with libc++ on OSX as
the conventional libstdc++ does not have the C++11 constructs that the
current code base makes use of (e.g. std::forward).
Since this was the last use of the transitional TR1, the unordered map
and set header can now be simplified as well.
This patch updates the stats to reflect the: 1) addition of the
internal queue in SimpleMemory, 2) moving of the memory class outside
FSConfig, 3) fixing up of the 2D vector printing format, 4) specifying
burst size and interface width for the DRAM instead of relying on
cache-line size, 5) performing merging in the DRAM controller write
buffer, and 6) fixing how idle cycles are counted in the atomic and
timing CPU models.
The main reason for bundling them up is to minimise the changeset
size.
Added a couple missing updates to the notIdleFraction stat. Without
these, it sometimes gives a (not) idle fraction that is greater than 1
or less than 0.
This patch adds support for specifying multi-channel memory
configurations on the command line, e.g. 'se/fs.py
--mem-type=ddr3_1600_x64 --mem-channels=4'. To enable this, it
enhances the functionality of MemConfig and moves the existing
makeMultiChannel class method from SimpleDRAM to the support scripts.
The se/fs.py example scripts are updated to make use of the new
feature.
This patch changes the default parameter value of conf_table_reported
to match the common case. It also simplifies the regression and config
scripts to reflect this change.
This patch addresses an issue with trace playback in the TrafficGen
where the trace was reset but the header was not read from the trace
when a captured trace was played back for a second time. This resulted
in parsing errors as the expected message was not found in the trace
file.
The header check is moved to an init funtion which is called by the
constructor and when the trace is reset. This ensures that the trace
header is read each time when the trace is replayed.
This patch also addresses a small formatting issue in a panic.
This patch changes the data structure used for the DRAM read, write
and response queues from an STL list to deque. This optimisation is
based on the observation that the size is small (and fixed), and that
the structures are frequently iterated over in a linear fashion.
This patch implements basic write merging in the DRAM to avoid
redundant bursts. When a new access is added to the queue it is
compared against the existing entries, and if it is either
intersecting or immediately succeeding/preceeding an existing item it
is merged.
There is currently no attempt made at avoiding iterating over the
existing items in determining whether merging is possible or not.
This patch gets rid of bytesPerCacheLine parameter and makes the DRAM
configuration separate from cache line size. Instead of
bytesPerCacheLine, we define a parameter for the DRAM called
burst_length. The burst_length parameter shows the length of a DRAM
device burst in bits. Also, lines_per_rowbuffer is replaced with
device_rowbuffer_size to improve code portablity.
This patch adds a burst length in beats for each memory type, an
interface width for each memory type, and the memory controller model
is extended to reason about "system" packets vs "dram" packets and
assemble the responses properly. It means that system packets larger
than a full burst are split into multiple dram packets.
This patch modifies the SimpleTimingCPU drain check to also consider
the fetch event. Previously, there was an assumption that there is
never a fetch event scheduled if the CPU is not executing
microcode. However, when a context is activated, a fetch even is
scheduled, and microPC() is zero.
This patch adds a check to the quiesce operation to ensure that the
CPU does not suspend itself when there are unmasked interrupts
pending. Without this patch there are corner cases when the CPU gets
an interrupt before the quiesce is executed and then never wakes up
again.
This patch addresses an issue with the text-based stats output which
resulted in Vector2D stats being printed without subnames in the event
that one of the dimensions was of length 1.
This patch also fixes the total printing for the 2D vector. Previously
totals were printed without explicitly stating that a total was being
printed. This has been rectified in this patch.
This patch adds the notion of voltage domains, and groups clock
domains that operate under the same voltage (i.e. power supply) into
domains. Each clock domain is required to be associated with a voltage
domain, and the latter requires the voltage to be explicitly set.
A voltage domain is an independently controllable voltage supply being
provided to section of the design. Thus, if you wish to perform
dynamic voltage scaling on a CPU, its clock domain should be
associated with a separate voltage domain.
The current implementation of the voltage domain does not take into
consideration cases where there are derived voltage domains running at
ratio of native voltage domains, as with the case where there can be
on-chip buck/boost (charge pumps) voltage regulation logic.
The regression and configuration scripts are updated with a generic
voltage domain for the system, and one for the CPUs.
This patch adds a packet queue in SimpleMemory to avoid using the
packet queue in the port (and thus have no involvement in the flow
control). The port queue was bound to 100 packets, and as the
SimpleMemory is modelling both a controller and an actual RAM, it
potentially has a large number of packets in flight. There is
currently no limit on the number of packets in the memory controller,
but this could easily be added in a follow-on patch.
As a result of the added internal storage, the functional access and
draining is updated. Some minor cleaning up and renaming has also been
done.
The memtest regression changes as a result of this patch and the stats
will be updated.
This patch fixes a bug in the O3 fetch stage that was introduced when
the cache line size was moved to the system. By mistake, the
initialisation and resetting of the fetch stage was merged and put in
the constructor. The resetting is now re-added where it should be.
Some of the code in StateMachine.py file is added to all the controllers and
is independent of the controller definition. This code is being moved to the
AbstractController class which is the parent class of all controllers.
This patch adds checkpointing support to x86 tlb. It upgrades the
cpt_upgrader.py script so that previously created checkpoints can
be updated. It moves the checkpoint version to 6.
This patch removes the notion of a peer block size and instead sets
the cache line size on the system level.
Previously the size was set per cache, and communicated through the
interconnect. There were plenty checks to ensure that everyone had the
same size specified, and these checks are now removed. Another benefit
that is not yet harnessed is that the cache line size is now known at
construction time, rather than after the port binding. Hence, the
block size can be locally stored and does not have to be queried every
time it is used.
A follow-on patch updates the configuration scripts accordingly.
Instead of relying on derived classes explicitly assigning
to the BasicPioDevice pioSize field, require them to pass
a size value in to the constructor.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
PciDev and IntDev stuck out as the only device classes that
ended in 'Dev' rather than 'Device'. This patch takes care
of that inconsistency.
Note that you may need to delete pre-existing files matching
build/*/python/m5/internal/param_* as scons does not pick up
indirect dependencies on imported python modules when generating
params, and the PciDev -> PciDevice rename takes place in a
file (dev/Device.py) that gets imported quite a bit.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
It was confusing having an AmbaDev namespace along with an
AmbaDevice class. The namespace stuff is now moved in to
a new base AmbaDevice class, which is a mixin for classes
AmbaPioDevice (the former AmbaDevice) and AmbaDmaDevice
to provide the readId function as an inherited member function.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
A couple of devices that have single fixed memory mapped regions
were not derived from BasicPioDevice, when that's exactly
the functionality that BasicPioDevice provides. This patch
gets rid of a little bit of redundant code by making those
devices actually do so.
Also fixed the weird case of X86ISA::Interrupts, where
the class already did derive from BasicPioDevice but
didn't actually use all the features it could have.
Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This code seems not to be of any use now. There is no path in the simulator
that allows for reconfiguring the network. A better approach would be to
take a checkpoint and start the simulation from the checkpoint with the new
configuration.
This patch reorganizes the cache tags to allow more flexibility to
implement new replacement policies. The base tags class is now a
clocked object so that derived classes can use a clock if they need
one. Also having deriving from SimObject allows specialized Tag
classes to be swapped in/out in .py files.
The cache set is now templatized to allow it to contain customized
cache blocks with additional informaiton. This involved moving code to
the .hh file and removing cacheset.cc.
The statistics belonging to the cache tags are now including ".tags"
in their name. Hence, the stats need an update to reflect the change
in naming.
This patch removes the multiplication operator support for Clock
parameters as this functionality is now achieved by creating derived
clock domains.
Nate, this one is for you.