Split SimpleCPU into two different models, AtomicSimpleCPU and

TimingSimpleCPU, which use atomic and timing memory accesses
respectively.  Common code is factored into the BaseSimpleCPU class.
AtomicSimpleCPU includes an option (simulate_stalls) to add delays
based on the estimated latency reported by the atomic accesses.
Plain old "SimpleCPU" is gone; I have not updated all the config
files (just test/test.py).
Also fixes to get timing accesses working in new memory model and
to get split-phase memory instruction definitions working with
new memory model as well.

arch/alpha/isa/main.isa:
    Need to include packet_impl.h for functions that use Packet objects.
arch/alpha/isa/mem.isa:
    Change completeAcc() methods to take Packet object pointers.
    Also split out StoreCond template for completeAcc(), since
    that's the only one that needs write_result and we get an
    unused variable warning if we always have it in there.
build/SConstruct:
    Update list of recognized CPU model names.
configs/test/test.py:
    Change SimpleCPU to AtomicSimpleCPU.
cpu/SConscript:
    Define sources for new CPU models.
    Add split memory access methods to CPU model signatures.
cpu/cpu_models.py:
cpu/static_inst.hh:
    Define new CPU models.
cpu/simple/base.cc:
cpu/simple/base.hh:
    Factor out pieces specific to Atomic or Timing models.
mem/bus.cc:
    Bus needs to be able to route timing packets based on explicit dest
    so responses can get back to requester.  Set dest to Packet::Broadcast
    to indicate that dest should be derived from address.
    Also set packet src field based on port from which packet is sent.
mem/bus.hh:
    Set packet src field based on port from which packet is sent.
mem/packet.hh:
    Define Broadcast destination address to indicate that
    packet should be routed based on address.
mem/physical.cc:
    Set packet dest on response so packet is routed
    back to requester properly.
mem/port.cc:
    Flag blob packets as Broadcast.
python/m5/objects/PhysicalMemory.py:
    Change default latency to be 1 cycle.

--HG--
rename : cpu/simple/cpu.cc => cpu/simple/base.cc
rename : cpu/simple/cpu.hh => cpu/simple/base.hh
extra : convert_revision : e9646af6406a20c8c605087936dc4683375c2132
This commit is contained in:
Steve Reinhardt 2006-05-16 17:36:50 -04:00
parent 2db12b3d6c
commit 309e1d8193
20 changed files with 1997 additions and 1384 deletions

View file

@ -60,6 +60,7 @@ output exec {{
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "sim/sim_exit.hh"
#include "mem/packet_impl.hh"
using namespace AlphaISA;
}};

View file

@ -178,7 +178,8 @@ def template InitiateAccDeclare {{
def template CompleteAccDeclare {{
Fault completeAcc(uint8_t *, %(CPU_exec_context)s *, Trace::InstRecord *) const;
Fault completeAcc(Packet *, %(CPU_exec_context)s *,
Trace::InstRecord *) const;
}};
@ -304,7 +305,7 @@ def template LoadInitiateAcc {{
def template LoadCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
Fault %(class_name)s::completeAcc(Packet *pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
@ -313,7 +314,7 @@ def template LoadCompleteAcc {{
%(fp_enable_check)s;
%(op_decl)s;
memcpy(&Mem, data, sizeof(Mem));
Mem = pkt->get<typeof(Mem)>();
if (fault == NoFault) {
%(memacc_code)s;
@ -406,7 +407,6 @@ def template StoreInitiateAcc {{
{
Addr EA;
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_decl)s;
@ -419,7 +419,7 @@ def template StoreInitiateAcc {{
if (fault == NoFault) {
fault = xc->write((uint%(mem_acc_size)d_t&)Mem, EA,
memAccessFlags, &write_result);
memAccessFlags, NULL);
if (traceData) { traceData->setData(Mem); }
}
@ -429,17 +429,39 @@ def template StoreInitiateAcc {{
def template StoreCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
Fault %(class_name)s::completeAcc(Packet *pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
uint64_t write_result = 0;
%(fp_enable_check)s;
%(op_dest_decl)s;
memcpy(&write_result, data, sizeof(write_result));
if (fault == NoFault) {
%(postacc_code)s;
}
if (fault == NoFault) {
%(op_wb)s;
}
return fault;
}
}};
def template StoreCondCompleteAcc {{
Fault %(class_name)s::completeAcc(Packet *pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_dest_decl)s;
uint64_t write_result = pkt->req->getScResult();
if (fault == NoFault) {
%(postacc_code)s;
@ -505,7 +527,7 @@ def template MiscInitiateAcc {{
def template MiscCompleteAcc {{
Fault %(class_name)s::completeAcc(uint8_t *data,
Fault %(class_name)s::completeAcc(Packet *pkt,
%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
@ -577,7 +599,7 @@ def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
if (exec_template_base == 'Load'):
initiateacc_cblk = CodeBlock(ea_code + memacc_code)
completeacc_cblk = CodeBlock(memacc_code + postacc_code)
elif (exec_template_base == 'Store'):
elif (exec_template_base.startswith('Store')):
initiateacc_cblk = CodeBlock(ea_code + memacc_code)
completeacc_cblk = CodeBlock(postacc_code)
else:
@ -595,7 +617,7 @@ def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
initiateacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.postacc_code = postacc_cblk.code
elif (exec_template_base == 'Store'):
elif (exec_template_base.startswith('Store')):
initiateacc_iop.ea_code = ea_cblk.code
initiateacc_iop.memacc_code = memacc_cblk.code
completeacc_iop.postacc_code = postacc_cblk.code
@ -616,6 +638,13 @@ def LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
memacc_iop.constructor += s
# select templates
# define aliases... most StoreCond templates are the same as the
# corresponding Store templates (only CompleteAcc is different).
StoreCondMemAccExecute = StoreMemAccExecute
StoreCondExecute = StoreExecute
StoreCondInitiateAcc = StoreInitiateAcc
memAccExecTemplate = eval(exec_template_base + 'MemAccExecute')
fullExecTemplate = eval(exec_template_base + 'Execute')
initiateAccTemplate = eval(exec_template_base + 'InitiateAcc')
@ -685,7 +714,7 @@ def format StoreCond(memacc_code, postacc_code,
mem_flags = [], inst_flags = []) {{
(header_output, decoder_output, decode_block, exec_output) = \
LoadStoreBase(name, Name, ea_code, memacc_code, mem_flags, inst_flags,
postacc_code, exec_template_base = 'Store')
postacc_code, exec_template_base = 'StoreCond')
}};

View file

@ -222,7 +222,8 @@ env = conf.Finish()
env['ALL_ISA_LIST'] = ['alpha', 'sparc', 'mips']
# Define the universe of supported CPU models
env['ALL_CPU_LIST'] = ['SimpleCPU', 'FastCPU', 'FullCPU', 'AlphaFullCPU']
env['ALL_CPU_LIST'] = ['AtomicSimpleCPU', 'TimingSimpleCPU',
'FastCPU', 'FullCPU', 'AlphaFullCPU']
# Sticky options get saved in the options file so they persist from
# one invocation to the next (unless overridden, in which case the new

View file

@ -6,7 +6,7 @@ class HelloWorld(AlphaLiveProcess):
magicbus = Bus()
mem = PhysicalMemory()
cpu = SimpleCPU(workload=HelloWorld(), mem=magicbus)
cpu = AtomicSimpleCPU(workload=HelloWorld(), mem=magicbus)
system = System(physmem=mem, cpu=cpu)
system.c1 = Connector(side_a=mem, side_b=magicbus)
root = Root(system=system)

View file

@ -51,6 +51,11 @@ execfile(models_db.srcnode().abspath)
# Template for execute() signature.
exec_sig_template = '''
virtual Fault execute(%s *xc, Trace::InstRecord *traceData) const = 0;
virtual Fault initiateAcc(%s *xc, Trace::InstRecord *traceData) const
{ panic("initiateAcc not defined!"); };
virtual Fault completeAcc(Packet *pkt, %s *xc,
Trace::InstRecord *traceData) const
{ panic("completeAcc not defined!"); };
'''
# Generate header.
@ -62,7 +67,7 @@ def gen_cpu_exec_signatures(target, source, env):
'''
for cpu in env['CPU_MODELS']:
xc_type = CpuModel.dict[cpu].strings['CPU_exec_context']
print >> f, exec_sig_template % xc_type
print >> f, exec_sig_template % (xc_type, xc_type, xc_type)
print >> f, '''
#endif // __CPU_STATIC_INST_EXEC_SIGS_HH__
'''
@ -86,8 +91,17 @@ env.Command('static_inst_exec_sigs.hh', models_db,
sources = []
if 'SimpleCPU' in env['CPU_MODELS']:
sources += Split('simple/cpu.cc')
need_simple_base = False
if 'AtomicSimpleCPU' in env['CPU_MODELS']:
need_simple_base = True
sources += Split('simple/atomic.cc')
if 'TimingSimpleCPU' in env['CPU_MODELS']:
need_simple_base = True
sources += Split('simple/timing.cc')
if need_simple_base:
sources += Split('simple/base.cc')
if 'FastCPU' in env['CPU_MODELS']:
sources += Split('fast/cpu.cc')

View file

@ -56,9 +56,12 @@ class CpuModel:
# - substitution strings for ISA description templates
#
CpuModel('SimpleCPU', 'simple_cpu_exec.cc',
'#include "cpu/simple/cpu.hh"',
{ 'CPU_exec_context': 'SimpleCPU' })
CpuModel('AtomicSimpleCPU', 'atomic_simple_cpu_exec.cc',
'#include "cpu/simple/atomic.hh"',
{ 'CPU_exec_context': 'AtomicSimpleCPU' })
CpuModel('TimingSimpleCPU', 'timing_simple_cpu_exec.cc',
'#include "cpu/simple/timing.hh"',
{ 'CPU_exec_context': 'TimingSimpleCPU' })
CpuModel('FastCPU', 'fast_cpu_exec.cc',
'#include "cpu/fast/cpu.hh"',
{ 'CPU_exec_context': 'FastCPU' })

555
cpu/simple/atomic.cc Normal file
View file

@ -0,0 +1,555 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/atomic.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
using namespace std;
using namespace TheISA;
AtomicSimpleCPU::TickEvent::TickEvent(AtomicSimpleCPU *c)
: Event(&mainEventQueue, CPU_Tick_Pri), cpu(c)
{
}
void
AtomicSimpleCPU::TickEvent::process()
{
cpu->tick();
}
const char *
AtomicSimpleCPU::TickEvent::description()
{
return "AtomicSimpleCPU tick event";
}
void
AtomicSimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
bool
AtomicSimpleCPU::CpuPort::recvTiming(Packet &pkt)
{
panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
return true;
}
Tick
AtomicSimpleCPU::CpuPort::recvAtomic(Packet &pkt)
{
panic("AtomicSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
AtomicSimpleCPU::CpuPort::recvFunctional(Packet &pkt)
{
panic("AtomicSimpleCPU doesn't expect recvFunctional callback!");
}
void
AtomicSimpleCPU::CpuPort::recvStatusChange(Status status)
{
panic("AtomicSimpleCPU doesn't expect recvStatusChange callback!");
}
Packet *
AtomicSimpleCPU::CpuPort::recvRetry()
{
panic("AtomicSimpleCPU doesn't expect recvRetry callback!");
return NULL;
}
AtomicSimpleCPU::AtomicSimpleCPU(Params *p)
: BaseSimpleCPU(p), tickEvent(this),
width(p->width), simulate_stalls(p->simulate_stalls),
icachePort(this), dcachePort(this)
{
_status = Idle;
ifetch_req = new Request(true);
ifetch_req->setAsid(0);
// @todo fix me and get the real cpu iD!!!
ifetch_req->setCpuNum(0);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->dataStatic(&inst);
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
ifetch_pkt->dest = Packet::Broadcast;
data_read_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_read_req->setCpuNum(0);
data_read_req->setAsid(0);
data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->dataStatic(&dataReg);
data_read_pkt->req = data_read_req;
data_read_pkt->dest = Packet::Broadcast;
data_write_req = new Request(true);
// @todo fix me and get the real cpu iD!!!
data_write_req->setCpuNum(0);
data_write_req->setAsid(0);
data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->dest = Packet::Broadcast;
}
AtomicSimpleCPU::~AtomicSimpleCPU()
{
}
void
AtomicSimpleCPU::serialize(ostream &os)
{
BaseSimpleCPU::serialize(os);
SERIALIZE_ENUM(_status);
nameOut(os, csprintf("%s.tickEvent", name()));
tickEvent.serialize(os);
}
void
AtomicSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseSimpleCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
}
void
AtomicSimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == Running) {
_status = SwitchedOut;
tickEvent.squash();
}
sampler->signalSwitched();
}
void
AtomicSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
assert(!tickEvent.scheduled());
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
tickEvent.schedule(curTick);
break;
}
}
}
void
AtomicSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
assert(!tickEvent.scheduled());
notIdleFraction++;
tickEvent.schedule(curTick + cycles(delay));
_status = Running;
}
void
AtomicSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Running);
assert(tickEvent.scheduled());
notIdleFraction--;
tickEvent.deschedule();
_status = Idle;
}
template <class T>
Fault
AtomicSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
data_read_pkt->reset();
data_read_pkt->addr = data_read_req->getPaddr();
data_read_pkt->size = sizeof(T);
dcache_complete = dcachePort.sendAtomic(*data_read_pkt);
dcache_access = true;
assert(data_read_pkt->result == Success);
data = data_read_pkt->get<T>();
}
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
AtomicSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
AtomicSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
AtomicSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
if (traceData) {
traceData->setAddr(addr);
}
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
data_write_pkt->reset();
data = htog(data);
data_write_pkt->dataStatic(&data);
data_write_pkt->addr = data_write_req->getPaddr();
data_write_pkt->size = sizeof(T);
dcache_complete = dcachePort.sendAtomic(*data_write_pkt);
dcache_access = true;
assert(data_write_pkt->result == Success);
}
if (res && (fault == NoFault))
*res = data_write_pkt->result;
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// @todo this is a hack and only works on uniprocessor systems
// some one else can implement LL/SC.
if (data_write_req->getFlags() & LOCKED)
*res = 1;
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
AtomicSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
AtomicSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
AtomicSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
AtomicSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
AtomicSimpleCPU::tick()
{
Tick latency = cycles(1); // instruction takes one cycle by default
for (int i = 0; i < width; ++i) {
numCycles++;
ifetch_req->resetMin();
ifetch_pkt->reset();
Fault fault = setupFetchPacket(ifetch_pkt);
if (fault == NoFault) {
Tick icache_complete = icachePort.sendAtomic(*ifetch_pkt);
// ifetch_req is initialized to read the instruction directly
// into the CPU object's inst field.
dcache_access = false; // assume no dcache access
preExecute();
fault = curStaticInst->execute(this, traceData);
postExecute();
if (traceData) {
traceData->finalize();
}
if (simulate_stalls) {
// This calculation assumes that the icache and dcache
// access latencies are always a multiple of the CPU's
// cycle time. If not, the next tick event may get
// scheduled at a non-integer multiple of the CPU
// cycle time.
Tick icache_stall = icache_complete - curTick - cycles(1);
Tick dcache_stall =
dcache_access ? dcache_complete - curTick - cycles(1) : 0;
latency += icache_stall + dcache_stall;
}
}
advancePC(fault);
}
tickEvent.schedule(curTick + latency);
}
////////////////////////////////////////////////////////////////////////
//
// AtomicSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(AtomicSimpleCPU)
CREATE_SIM_OBJECT(AtomicSimpleCPU)
{
AtomicSimpleCPU::Params *params = new AtomicSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->width = width;
params->simulate_stalls = simulate_stalls;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
AtomicSimpleCPU *cpu = new AtomicSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("AtomicSimpleCPU", AtomicSimpleCPU)

139
cpu/simple/atomic.hh Normal file
View file

@ -0,0 +1,139 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_SIMPLE_ATOMIC_HH__
#define __CPU_SIMPLE_ATOMIC_HH__
#include "cpu/simple/base.hh"
class AtomicSimpleCPU : public BaseSimpleCPU
{
public:
struct Params : public BaseSimpleCPU::Params {
int width;
bool simulate_stalls;
};
AtomicSimpleCPU(Params *params);
virtual ~AtomicSimpleCPU();
virtual void init();
public:
//
enum Status {
Running,
Idle,
SwitchedOut
};
protected:
Status _status;
Status status() const { return _status; }
private:
struct TickEvent : public Event
{
AtomicSimpleCPU *cpu;
TickEvent(AtomicSimpleCPU *c);
void process();
const char *description();
};
TickEvent tickEvent;
const int width;
const bool simulate_stalls;
// main simulation loop (one cycle)
void tick();
class CpuPort : public Port
{
AtomicSimpleCPU *cpu;
public:
CpuPort(AtomicSimpleCPU *_cpu)
: cpu(_cpu)
{ }
protected:
virtual bool recvTiming(Packet &pkt);
virtual Tick recvAtomic(Packet &pkt);
virtual void recvFunctional(Packet &pkt);
virtual void recvStatusChange(Status status);
virtual Packet *recvRetry();
virtual void getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop)
{ resp.clear(); snoop.clear(); }
};
CpuPort icachePort;
CpuPort dcachePort;
Request *ifetch_req;
Packet *ifetch_pkt;
Request *data_read_req;
Packet *data_read_pkt;
Request *data_write_req;
Packet *data_write_pkt;
bool dcache_access;
Tick dcache_complete;
public:
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
};
#endif // __CPU_SIMPLE_ATOMIC_HH__

479
cpu/simple/base.cc Normal file
View file

@ -0,0 +1,479 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/stats/events.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/simple/base.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "kern/kernel_stats.hh"
#include "mem/packet_impl.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/mem_object.hh"
#endif // FULL_SYSTEM
using namespace std;
using namespace TheISA;
BaseSimpleCPU::BaseSimpleCPU(Params *p)
: BaseCPU(p), mem(p->mem), cpuXC(NULL)
{
#if FULL_SYSTEM
cpuXC = new CPUExecContext(this, 0, p->system, p->itb, p->dtb);
#else
cpuXC = new CPUExecContext(this, /* thread_num */ 0, p->process,
/* asid */ 0, mem);
#endif // !FULL_SYSTEM
xcProxy = cpuXC->getProxy();
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
execContexts.push_back(xcProxy);
}
BaseSimpleCPU::~BaseSimpleCPU()
{
}
void
BaseSimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
BaseSimpleCPU::resetStats()
{
startNumInst = numInst;
// notIdleFraction = (_status != Idle);
}
void
BaseSimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
}
void
BaseSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
BaseSimpleCPU::copySrcTranslate(Addr src)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(req);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
#else
return NoFault;
#endif
}
Fault
BaseSimpleCPU::copy(Addr dest)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
dcacheInterface->access(memReq);
}
}
else
assert(!fault->isAlignmentFault());
return fault;
#else
panic("copy not implemented");
return NoFault;
#endif
}
#if FULL_SYSTEM
Addr
BaseSimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
BaseSimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
void
BaseSimpleCPU::checkForInterrupts()
{
#if FULL_SYSTEM
if (checkInterrupts && check_interrupts() && !cpuXC->inPalMode() &&
status() != IcacheAccessComplete) {
int ipl = 0;
int summary = 0;
checkInterrupts = false;
if (cpuXC->readMiscReg(IPR_SIRR)) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (cpuXC->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpuXC->cpu->intr_status();
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
if (cpuXC->readMiscReg(IPR_ASTRR))
panic("asynchronous traps not implemented\n");
if (ipl && ipl > cpuXC->readMiscReg(IPR_IPLR)) {
cpuXC->setMiscReg(IPR_ISR, summary);
cpuXC->setMiscReg(IPR_INTID, ipl);
Fault(new InterruptFault)->invoke(xcProxy);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
cpuXC->readMiscReg(IPR_IPLR), ipl, summary);
}
}
#endif
}
Fault
BaseSimpleCPU::setupFetchPacket(Packet *ifetch_pkt)
{
// Try to fetch an instruction
// set up memory request for instruction fetch
DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p NNPC:%08p\n",cpuXC->readPC(),
cpuXC->readNextPC(),cpuXC->readNextNPC());
Request *ifetch_req = ifetch_pkt->req;
ifetch_req->setVaddr(cpuXC->readPC() & ~3);
ifetch_req->setTime(curTick);
#if FULL_SYSTEM
ifetch_req->setFlags((cpuXC->readPC() & 1) ? PHYSICAL : 0);
#else
ifetch_req->setFlags(0);
#endif
Fault fault = cpuXC->translateInstReq(ifetch_req);
if (fault == NoFault) {
ifetch_pkt->addr = ifetch_req->getPaddr();
}
return fault;
}
void
BaseSimpleCPU::preExecute()
{
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
cpuXC->setFloatReg(ZeroReg, 0.0);
#endif // ALPHA_ISA
// keep an instruction count
numInst++;
numInsts++;
cpuXC->func_exe_inst++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = gtoh(inst);
curStaticInst = StaticInst::decode(makeExtMI(inst, cpuXC->readPC()));
traceData = Trace::getInstRecord(curTick, xcProxy, this, curStaticInst,
cpuXC->readPC());
DPRINTF(Decode,"Decode: Decoded %s instruction (opcode: 0x%x): 0x%x\n",
curStaticInst->getName(), curStaticInst->getOpcode(),
curStaticInst->machInst);
#if FULL_SYSTEM
cpuXC->setInst(inst);
#endif // FULL_SYSTEM
}
void
BaseSimpleCPU::postExecute()
{
#if FULL_SYSTEM
if (system->kernelBinning->fnbin) {
assert(kernelStats);
system->kernelBinning->execute(xcProxy, inst);
}
if (cpuXC->profile) {
bool usermode =
(cpuXC->readMiscReg(AlphaISA::IPR_DTB_CM) & 0x18) != 0;
cpuXC->profilePC = usermode ? 1 : cpuXC->readPC();
ProfileNode *node = cpuXC->profile->consume(xcProxy, inst);
if (node)
cpuXC->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
traceFunctions(cpuXC->readPC());
}
void
BaseSimpleCPU::advancePC(Fault fault)
{
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
#else // !FULL_SYSTEM
fatal("fault (%s) detected @ PC %08p", fault->name(), cpuXC->readPC());
#endif // FULL_SYSTEM
}
else {
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
#if THE_ISA == ALPHA_ISA
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
} while (oldpc != cpuXC->readPC());
#endif
}

View file

@ -26,8 +26,8 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#ifndef __CPU_SIMPLE_BASE_HH__
#define __CPU_SIMPLE_BASE_HH__
#include "base/statistics.hh"
#include "config/full_system.hh"
@ -65,108 +65,19 @@ namespace Trace {
}
// Set exactly one of these symbols to 1 to set the memory access
// model. Probably should make these template parameters, or even
// just fork the CPU models.
//
#define SIMPLE_CPU_MEM_TIMING 0
#define SIMPLE_CPU_MEM_ATOMIC 0
#define SIMPLE_CPU_MEM_IMMEDIATE 1
class SimpleCPU : public BaseCPU
class BaseSimpleCPU : public BaseCPU
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
class CpuPort : public Port
{
SimpleCPU *cpu;
public:
CpuPort(SimpleCPU *_cpu)
: cpu(_cpu)
{ }
protected:
virtual bool recvTiming(Packet &pkt);
virtual Tick recvAtomic(Packet &pkt);
virtual void recvFunctional(Packet &pkt);
virtual void recvStatusChange(Status status);
virtual Packet *recvRetry();
virtual void getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop)
{ resp.clear(); snoop.clear(); }
};
MemObject *mem;
CpuPort icachePort;
CpuPort dcachePort;
public:
// main simulation loop (one cycle)
void tick();
virtual void init();
private:
struct TickEvent : public Event
{
SimpleCPU *cpu;
int width;
TickEvent(SimpleCPU *c, int w);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int numCycles)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + cycles(numCycles));
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(numCycles));
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
protected:
Trace::InstRecord *traceData;
public:
//
enum Status {
Running,
Idle,
IcacheRetry,
IcacheWaitResponse,
IcacheAccessComplete,
DcacheRetry,
DcacheWaitResponse,
DcacheWaitSwitch,
SwitchedOut
};
private:
Status _status;
public:
void post_interrupt(int int_num, int index);
@ -181,7 +92,6 @@ class SimpleCPU : public BaseCPU
public:
struct Params : public BaseCPU::Params
{
int width;
MemObject *mem;
#if FULL_SYSTEM
AlphaITB *itb;
@ -190,8 +100,8 @@ class SimpleCPU : public BaseCPU
Process *process;
#endif
};
SimpleCPU(Params *params);
virtual ~SimpleCPU();
BaseSimpleCPU(Params *params);
virtual ~BaseSimpleCPU();
public:
// execution context
@ -199,9 +109,6 @@ class SimpleCPU : public BaseCPU
ExecContext *xcProxy;
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
@ -214,17 +121,6 @@ class SimpleCPU : public BaseCPU
// Static data storage
TheISA::IntReg dataReg;
#if SIMPLE_CPU_MEM_TIMING
Packet *retry_pkt;
#elif SIMPLE_CPU_MEM_ATOMIC || SIMPLE_CPU_MEM_IMMEDIATE
Request *ifetch_req;
Packet *ifetch_pkt;
Request *data_read_req;
Packet *data_read_pkt;
Request *data_write_req;
Packet *data_write_pkt;
#endif
// Pointer to the sampler that is telling us to switchover.
// Used to signal the completion of the pipe drain and schedule
// the next switchover
@ -232,10 +128,12 @@ class SimpleCPU : public BaseCPU
StaticInstPtr curStaticInst;
Status status() const { return _status; }
void checkForInterrupts();
Fault setupFetchPacket(Packet *ifetch_pkt);
void preExecute();
void postExecute();
void advancePC(Fault fault);
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
@ -280,26 +178,13 @@ class SimpleCPU : public BaseCPU
Stats::Scalar<> dcacheRetryCycles;
Counter lastDcacheRetry;
void sendIcacheRequest(Packet *pkt);
void sendDcacheRequest(Packet *pkt);
void processResponse(Packet &response);
Packet * processRetry();
void recvStatusChange(Port::Status status) {}
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
void setEA(Addr EA) { panic("BaseSimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("BaseSimpleCPU::getEA() not implemented\n"); }
void prefetch(Addr addr, unsigned flags)
{
@ -428,4 +313,4 @@ class SimpleCPU : public BaseCPU
ExecContext *xcBase() { return xcProxy; }
};
#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#endif // __CPU_SIMPLE_BASE_HH__

File diff suppressed because it is too large Load diff

559
cpu/simple/timing.cc Normal file
View file

@ -0,0 +1,559 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
using namespace std;
using namespace TheISA;
void
TimingSimpleCPU::init()
{
//Create Memory Ports (conect them up)
Port *mem_dport = mem->getPort("");
dcachePort.setPeer(mem_dport);
mem_dport->setPeer(&dcachePort);
Port *mem_iport = mem->getPort("");
icachePort.setPeer(mem_iport);
mem_iport->setPeer(&icachePort);
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
}
Tick
TimingSimpleCPU::CpuPort::recvAtomic(Packet &pkt)
{
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
TimingSimpleCPU::CpuPort::recvFunctional(Packet &pkt)
{
panic("TimingSimpleCPU doesn't expect recvFunctional callback!");
}
void
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
{
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
}
TimingSimpleCPU::TimingSimpleCPU(Params *p)
: BaseSimpleCPU(p), icachePort(this), dcachePort(this)
{
_status = Idle;
ifetch_pkt = dcache_pkt = NULL;
}
TimingSimpleCPU::~TimingSimpleCPU()
{
}
void
TimingSimpleCPU::serialize(ostream &os)
{
BaseSimpleCPU::serialize(os);
SERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseSimpleCPU::unserialize(cp, section);
UNSERIALIZE_ENUM(_status);
}
void
TimingSimpleCPU::switchOut(Sampler *s)
{
sampler = s;
if (status() == Running) {
_status = SwitchedOut;
}
sampler->signalSwitched();
}
void
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Active && _status != Running) {
_status = Running;
break;
}
}
}
void
TimingSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(cpuXC);
assert(_status == Idle);
notIdleFraction++;
_status = Running;
// kick things off by initiating the fetch of the next instruction
Event *e =
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, true);
e->schedule(curTick + cycles(delay));
}
void
TimingSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(cpuXC);
panic("TimingSimpleCPU::suspendContext not implemented");
assert(_status == Running);
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
Request *data_read_req = new Request(true);
data_read_req->setVaddr(addr);
data_read_req->setSize(sizeof(T));
data_read_req->setFlags(flags);
data_read_req->setTime(curTick);
if (traceData) {
traceData->setAddr(data_read_req->getVaddr());
}
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(data_read_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_read_pkt = new Packet;
data_read_pkt->cmd = Read;
data_read_pkt->req = data_read_req;
data_read_pkt->dataDynamic<T>(new T);
data_read_pkt->addr = data_read_req->getPaddr();
data_read_pkt->size = sizeof(T);
data_read_pkt->dest = Packet::Broadcast;
if (!dcachePort.sendTiming(*data_read_pkt)) {
_status = DcacheRetry;
dcache_pkt = data_read_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it has a dcache attached.
if (data_read_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
Request *data_write_req = new Request(true);
data_write_req->setVaddr(addr);
data_write_req->setTime(curTick);
data_write_req->setSize(sizeof(T));
data_write_req->setFlags(flags);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(data_write_req);
// Now do the access.
if (fault == NoFault) {
Packet *data_write_pkt = new Packet;
data_write_pkt->cmd = Write;
data_write_pkt->req = data_write_req;
data_write_pkt->allocate();
data_write_pkt->size = sizeof(T);
data_write_pkt->set(data);
data_write_pkt->addr = data_write_req->getPaddr();
data_write_pkt->dest = Packet::Broadcast;
if (!dcachePort.sendTiming(*data_write_pkt)) {
_status = DcacheRetry;
dcache_pkt = data_write_pkt;
} else {
_status = DcacheWaitResponse;
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (data_write_req->getFlags() & UNCACHEABLE)
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
TimingSimpleCPU::fetch()
{
Request *ifetch_req = new Request(true);
ifetch_req->setSize(sizeof(MachInst));
ifetch_pkt = new Packet;
ifetch_pkt->cmd = Read;
ifetch_pkt->dataStatic(&inst);
ifetch_pkt->req = ifetch_req;
ifetch_pkt->size = sizeof(MachInst);
ifetch_pkt->dest = Packet::Broadcast;
Fault fault = setupFetchPacket(ifetch_pkt);
if (fault == NoFault) {
if (!icachePort.sendTiming(*ifetch_pkt)) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
// ownership of packet transferred to memory system
ifetch_pkt = NULL;
}
} else {
panic("TimingSimpleCPU fetch fault handling not implemented");
}
}
void
TimingSimpleCPU::completeInst(Fault fault)
{
postExecute();
if (traceData) {
traceData->finalize();
}
advancePC(fault);
fetch();
}
void
TimingSimpleCPU::completeIfetch()
{
// received a response from the icache: execute the received
// instruction
assert(_status == IcacheWaitResponse);
_status = Running;
preExecute();
if (curStaticInst->isMemRef()) {
// load or store: just send to dcache
Fault fault = curStaticInst->initiateAcc(this, traceData);
assert(fault == NoFault);
assert(_status == DcacheWaitResponse);
} else {
// non-memory instruction: execute completely now
Fault fault = curStaticInst->execute(this, traceData);
completeInst(fault);
}
}
bool
TimingSimpleCPU::IcachePort::recvTiming(Packet &pkt)
{
cpu->completeIfetch();
return true;
}
Packet *
TimingSimpleCPU::IcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->ifetch_pkt != NULL);
assert(cpu->_status == IcacheRetry);
cpu->_status = IcacheWaitResponse;
Packet *tmp = cpu->ifetch_pkt;
cpu->ifetch_pkt = NULL;
return tmp;
}
void
TimingSimpleCPU::completeDataAccess(Packet *pkt)
{
// received a response from the dcache: complete the load or store
// instruction
assert(pkt->result == Success);
assert(_status == DcacheWaitResponse);
_status = Running;
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
completeInst(fault);
}
bool
TimingSimpleCPU::DcachePort::recvTiming(Packet &pkt)
{
cpu->completeDataAccess(&pkt);
return true;
}
Packet *
TimingSimpleCPU::DcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->dcache_pkt != NULL);
assert(cpu->_status == DcacheRetry);
cpu->_status = DcacheWaitResponse;
Packet *tmp = cpu->dcache_pkt;
cpu->dcache_pkt = NULL;
return tmp;
}
////////////////////////////////////////////////////////////////////////
//
// TimingSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
SimObjectParam<MemObject *> mem;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(mem, "memory"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
CREATE_SIM_OBJECT(TimingSimpleCPU)
{
TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->mem = mem;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)

150
cpu/simple/timing.hh Normal file
View file

@ -0,0 +1,150 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_SIMPLE_TIMING_HH__
#define __CPU_SIMPLE_TIMING_HH__
#include "cpu/simple/base.hh"
class TimingSimpleCPU : public BaseSimpleCPU
{
public:
struct Params : public BaseSimpleCPU::Params {
};
TimingSimpleCPU(Params *params);
virtual ~TimingSimpleCPU();
virtual void init();
public:
//
enum Status {
Idle,
Running,
IcacheRetry,
IcacheWaitResponse,
IcacheWaitSwitch,
DcacheRetry,
DcacheWaitResponse,
DcacheWaitSwitch,
SwitchedOut
};
protected:
Status _status;
Status status() const { return _status; }
private:
class CpuPort : public Port
{
protected:
TimingSimpleCPU *cpu;
public:
CpuPort(TimingSimpleCPU *_cpu)
: cpu(_cpu)
{ }
protected:
virtual Tick recvAtomic(Packet &pkt);
virtual void recvFunctional(Packet &pkt);
virtual void recvStatusChange(Status status);
virtual void getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop)
{ resp.clear(); snoop.clear(); }
};
class IcachePort : public CpuPort
{
public:
IcachePort(TimingSimpleCPU *_cpu)
: CpuPort(_cpu)
{ }
protected:
virtual bool recvTiming(Packet &pkt);
virtual Packet *recvRetry();
};
class DcachePort : public CpuPort
{
public:
DcachePort(TimingSimpleCPU *_cpu)
: CpuPort(_cpu)
{ }
protected:
virtual bool recvTiming(Packet &pkt);
virtual Packet *recvRetry();
};
IcachePort icachePort;
DcachePort dcachePort;
Packet *ifetch_pkt;
Packet *dcache_pkt;
public:
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
void fetch();
void completeInst(Fault fault);
void completeIfetch();
void completeDataAccess(Packet *);
};
#endif // __CPU_SIMPLE_TIMING_HH__

View file

@ -43,12 +43,14 @@
struct AlphaSimpleImpl;
class ExecContext;
class DynInst;
class Packet;
template <class Impl>
class AlphaDynInst;
class FastCPU;
class SimpleCPU;
class AtomicSimpleCPU;
class TimingSimpleCPU;
class InorderCPU;
class SymbolTable;

View file

@ -48,9 +48,16 @@ Bus::init()
/** Function called by the port when the bus is recieving a Timing
* transaction.*/
bool
Bus::recvTiming(Packet &pkt, int id)
Bus::recvTiming(Packet &pkt)
{
return findPort(pkt.addr, id)->sendTiming(pkt);
Port *port;
if (pkt.dest == Packet::Broadcast) {
port = findPort(pkt.addr, pkt.src);
} else {
assert(pkt.dest > 0 && pkt.dest < interfaces.size());
port = interfaces[pkt.dest];
}
return port->sendTiming(pkt);
}
Port *
@ -82,17 +89,19 @@ Bus::findPort(Addr addr, int id)
/** Function called by the port when the bus is recieving a Atomic
* transaction.*/
Tick
Bus::recvAtomic(Packet &pkt, int id)
Bus::recvAtomic(Packet &pkt)
{
return findPort(pkt.addr, id)->sendAtomic(pkt);
assert(pkt.dest == Packet::Broadcast);
return findPort(pkt.addr, pkt.src)->sendAtomic(pkt);
}
/** Function called by the port when the bus is recieving a Functional
* transaction.*/
void
Bus::recvFunctional(Packet &pkt, int id)
Bus::recvFunctional(Packet &pkt)
{
findPort(pkt.addr, id)->sendFunctional(pkt);
assert(pkt.dest == Packet::Broadcast);
findPort(pkt.addr, pkt.src)->sendFunctional(pkt);
}
/** Function called by the port when the bus is recieving a status change.*/

View file

@ -57,15 +57,15 @@ class Bus : public MemObject
/** Function called by the port when the bus is recieving a Timing
transaction.*/
bool recvTiming(Packet &pkt, int id);
bool recvTiming(Packet &pkt);
/** Function called by the port when the bus is recieving a Atomic
transaction.*/
Tick recvAtomic(Packet &pkt, int id);
Tick recvAtomic(Packet &pkt);
/** Function called by the port when the bus is recieving a Functional
transaction.*/
void recvFunctional(Packet &pkt, int id);
void recvFunctional(Packet &pkt);
/** Function called by the port when the bus is recieving a status change.*/
void recvStatusChange(Port::Status status, int id);
@ -77,8 +77,7 @@ class Bus : public MemObject
* loops)
* @return pointer to port that the packet should be sent out of.
*/
Port *
Bus::findPort(Addr addr, int id);
Port *findPort(Addr addr, int id);
/** Process address range request.
* @param resp addresses that we can respond to
@ -110,17 +109,17 @@ class Bus : public MemObject
/** When reciving a timing request from the peer port (at id),
pass it to the bus. */
virtual bool recvTiming(Packet &pkt)
{ return bus->recvTiming(pkt, id); }
{ pkt.src = id; return bus->recvTiming(pkt); }
/** When reciving a Atomic requestfrom the peer port (at id),
pass it to the bus. */
virtual Tick recvAtomic(Packet &pkt)
{ return bus->recvAtomic(pkt, id); }
{ pkt.src = id; return bus->recvAtomic(pkt); }
/** When reciving a Functional requestfrom the peer port (at id),
pass it to the bus. */
virtual void recvFunctional(Packet &pkt)
{ bus->recvFunctional(pkt, id); }
{ pkt.src = id; bus->recvFunctional(pkt); }
/** When reciving a status changefrom the peer port (at id),
pass it to the bus. */
@ -131,7 +130,8 @@ class Bus : public MemObject
// downstream from this bus, yes? That is, the union of all
// the 'owned' address ranges of all the other interfaces on
// this bus...
virtual void getDeviceAddressRanges(AddrRangeList &resp, AddrRangeList &snoop)
virtual void getDeviceAddressRanges(AddrRangeList &resp,
AddrRangeList &snoop)
{ bus->addressRanges(resp, snoop, id); }
// Hack to make translating port work without changes

View file

@ -121,6 +121,8 @@ struct Packet
/** A index of the source of the transaction. */
short src;
static const short Broadcast = -1;
/** A index to the destination of the transaction. */
short dest;

View file

@ -127,6 +127,7 @@ PhysicalMemory::doTimingAccess (Packet &pkt, MemoryPort* memoryPort)
{
doFunctionalAccess(pkt);
pkt.dest = pkt.src;
MemResponseEvent* response = new MemResponseEvent(pkt, memoryPort);
response->schedule(curTick + lat);

View file

@ -31,6 +31,7 @@
*/
#include "base/chunk_generator.hh"
#include "mem/packet_impl.hh"
#include "mem/port.hh"
void
@ -40,6 +41,7 @@ Port::blobHelper(Addr addr, uint8_t *p, int size, Command cmd)
Packet pkt;
pkt.req = &req;
pkt.cmd = cmd;
pkt.dest = Packet::Broadcast;
for (ChunkGenerator gen(addr, size, peerBlockSize());
!gen.done(); gen.next()) {

View file

@ -5,4 +5,4 @@ class PhysicalMemory(MemObject):
type = 'PhysicalMemory'
range = Param.AddrRange("Device Address")
file = Param.String('', "memory mapped file")
latency = Param.Latency('10ns', "latency of an access")
latency = Param.Latency(Parent.clock, "latency of an access")