2009-02-11 00:49:29 +01:00
|
|
|
/*
|
|
|
|
* Copyright (c) 2007 MIPS Technologies, Inc.
|
|
|
|
* Copyright (c) 2004-2006 The Regents of The University of Michigan
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
* met: redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer;
|
|
|
|
* redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution;
|
|
|
|
* neither the name of the copyright holders nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Authors: Kevin Lim
|
|
|
|
* Korey Sewell
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef __CPU_INORDER_DYN_INST_HH__
|
|
|
|
#define __CPU_INORDER_DYN_INST_HH__
|
|
|
|
|
|
|
|
#include <bitset>
|
|
|
|
#include <list>
|
|
|
|
#include <string>
|
|
|
|
|
2009-05-12 21:01:13 +02:00
|
|
|
#include "arch/isa_traits.hh"
|
2009-02-11 00:49:29 +01:00
|
|
|
#include "arch/faults.hh"
|
2009-05-12 21:01:13 +02:00
|
|
|
#include "arch/types.hh"
|
|
|
|
#include "arch/mt.hh"
|
2009-02-11 00:49:29 +01:00
|
|
|
#include "base/fast_alloc.hh"
|
|
|
|
#include "base/trace.hh"
|
|
|
|
#include "cpu/inorder/inorder_trace.hh"
|
|
|
|
#include "config/full_system.hh"
|
|
|
|
#include "cpu/thread_context.hh"
|
|
|
|
#include "cpu/exetrace.hh"
|
|
|
|
#include "cpu/inst_seq.hh"
|
|
|
|
#include "cpu/op_class.hh"
|
|
|
|
#include "cpu/static_inst.hh"
|
|
|
|
#include "cpu/inorder/thread_state.hh"
|
|
|
|
#include "cpu/inorder/resource.hh"
|
|
|
|
#include "cpu/inorder/pipeline_traits.hh"
|
|
|
|
#include "mem/packet.hh"
|
|
|
|
#include "sim/system.hh"
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* Defines a dynamic instruction context for a inorder CPU model.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// Forward declaration.
|
|
|
|
class StaticInstPtr;
|
|
|
|
class ResourceRequest;
|
|
|
|
|
|
|
|
class InOrderDynInst : public FastAlloc, public RefCounted
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// Binary machine instruction type.
|
|
|
|
typedef TheISA::MachInst MachInst;
|
|
|
|
// Extended machine instruction type
|
|
|
|
typedef TheISA::ExtMachInst ExtMachInst;
|
|
|
|
// Logical register index type.
|
|
|
|
typedef TheISA::RegIndex RegIndex;
|
|
|
|
// Integer register type.
|
|
|
|
typedef TheISA::IntReg IntReg;
|
|
|
|
// Floating point register type.
|
|
|
|
typedef TheISA::FloatReg FloatReg;
|
|
|
|
// Floating point register type.
|
|
|
|
typedef TheISA::MiscReg MiscReg;
|
|
|
|
|
|
|
|
typedef short int PhysRegIndex;
|
|
|
|
|
|
|
|
/** The refcounted DynInst pointer to be used. In most cases this is
|
|
|
|
* what should be used, and not DynInst*.
|
|
|
|
*/
|
|
|
|
typedef RefCountingPtr<InOrderDynInst> DynInstPtr;
|
|
|
|
|
|
|
|
// The list of instructions iterator type.
|
|
|
|
typedef std::list<DynInstPtr>::iterator ListIt;
|
|
|
|
|
|
|
|
enum {
|
|
|
|
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
|
|
|
|
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
|
|
|
|
};
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** BaseDynInst constructor given a binary instruction.
|
|
|
|
* @param inst The binary instruction.
|
|
|
|
* @param PC The PC of the instruction.
|
|
|
|
* @param pred_PC The predicted next PC.
|
|
|
|
* @param seq_num The sequence number of the instruction.
|
|
|
|
* @param cpu Pointer to the instruction's CPU.
|
|
|
|
*/
|
|
|
|
InOrderDynInst(ExtMachInst inst, Addr PC, Addr pred_PC, InstSeqNum seq_num,
|
|
|
|
InOrderCPU *cpu);
|
|
|
|
|
|
|
|
/** BaseDynInst constructor given a binary instruction.
|
|
|
|
* @param seq_num The sequence number of the instruction.
|
|
|
|
* @param cpu Pointer to the instruction's CPU.
|
|
|
|
* NOTE: Must set Binary Instrution through Member Function
|
|
|
|
*/
|
|
|
|
InOrderDynInst(InOrderCPU *cpu, InOrderThreadState *state, InstSeqNum seq_num,
|
|
|
|
unsigned tid);
|
|
|
|
|
|
|
|
/** BaseDynInst constructor given a StaticInst pointer.
|
|
|
|
* @param _staticInst The StaticInst for this BaseDynInst.
|
|
|
|
*/
|
|
|
|
InOrderDynInst(StaticInstPtr &_staticInst);
|
|
|
|
|
|
|
|
/** Skeleton Constructor. */
|
|
|
|
InOrderDynInst();
|
|
|
|
|
|
|
|
/** InOrderDynInst destructor. */
|
|
|
|
~InOrderDynInst();
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** The sequence number of the instruction. */
|
|
|
|
InstSeqNum seqNum;
|
|
|
|
|
|
|
|
/** The sequence number of the instruction. */
|
|
|
|
InstSeqNum bdelaySeqNum;
|
|
|
|
|
|
|
|
enum Status {
|
|
|
|
RegDepMapEntry, /// Instruction has been entered onto the RegDepMap
|
|
|
|
IqEntry, /// Instruction is in the IQ
|
|
|
|
RobEntry, /// Instruction is in the ROB
|
|
|
|
LsqEntry, /// Instruction is in the LSQ
|
|
|
|
Completed, /// Instruction has completed
|
|
|
|
ResultReady, /// Instruction has its result
|
|
|
|
CanIssue, /// Instruction can issue and execute
|
|
|
|
Issued, /// Instruction has issued
|
|
|
|
Executed, /// Instruction has executed
|
|
|
|
CanCommit, /// Instruction can commit
|
|
|
|
AtCommit, /// Instruction has reached commit
|
|
|
|
Committed, /// Instruction has committed
|
|
|
|
Squashed, /// Instruction is squashed
|
|
|
|
SquashedInIQ, /// Instruction is squashed in the IQ
|
|
|
|
SquashedInLSQ, /// Instruction is squashed in the LSQ
|
|
|
|
SquashedInROB, /// Instruction is squashed in the ROB
|
|
|
|
RecoverInst, /// Is a recover instruction
|
|
|
|
BlockingInst, /// Is a blocking instruction
|
|
|
|
ThreadsyncWait, /// Is a thread synchronization instruction
|
|
|
|
SerializeBefore, /// Needs to serialize on
|
|
|
|
/// instructions ahead of it
|
|
|
|
SerializeAfter, /// Needs to serialize instructions behind it
|
|
|
|
SerializeHandled, /// Serialization has been handled
|
|
|
|
NumStatus
|
|
|
|
};
|
|
|
|
|
|
|
|
/** The status of this BaseDynInst. Several bits can be set. */
|
|
|
|
std::bitset<NumStatus> status;
|
|
|
|
|
|
|
|
/** The thread this instruction is from. */
|
|
|
|
short threadNumber;
|
|
|
|
|
|
|
|
/** data address space ID, for loads & stores. */
|
|
|
|
short asid;
|
|
|
|
|
|
|
|
/** The virtual processor number */
|
|
|
|
short virtProcNumber;
|
|
|
|
|
|
|
|
/** The StaticInst used by this BaseDynInst. */
|
|
|
|
StaticInstPtr staticInst;
|
|
|
|
|
|
|
|
/** InstRecord that tracks this instructions. */
|
|
|
|
Trace::InOrderTraceRecord *traceData;
|
|
|
|
|
|
|
|
/** Pointer to the Impl's CPU object. */
|
|
|
|
InOrderCPU *cpu;
|
|
|
|
|
|
|
|
/** Pointer to the thread state. */
|
|
|
|
InOrderThreadState *thread;
|
|
|
|
|
|
|
|
/** The kind of fault this instruction has generated. */
|
|
|
|
Fault fault;
|
|
|
|
|
|
|
|
/** The memory request. */
|
|
|
|
Request *req;
|
|
|
|
|
|
|
|
/** Pointer to the data for the memory access. */
|
|
|
|
uint8_t *memData;
|
|
|
|
|
|
|
|
/** Data used for a store for operation. */
|
|
|
|
uint64_t loadData;
|
|
|
|
|
|
|
|
/** Data used for a store for operation. */
|
|
|
|
uint64_t storeData;
|
|
|
|
|
|
|
|
/** The resource schedule for this inst */
|
|
|
|
ThePipeline::ResSchedule resSched;
|
|
|
|
|
|
|
|
/** List of active resource requests for this instruction */
|
|
|
|
std::list<ResourceRequest*> reqList;
|
|
|
|
|
|
|
|
/** The effective virtual address (lds & stores only). */
|
|
|
|
Addr effAddr;
|
|
|
|
|
|
|
|
/** The effective physical address. */
|
|
|
|
Addr physEffAddr;
|
|
|
|
|
|
|
|
/** Effective virtual address for a copy source. */
|
|
|
|
Addr copySrcEffAddr;
|
|
|
|
|
|
|
|
/** Effective physical address for a copy source. */
|
|
|
|
Addr copySrcPhysEffAddr;
|
|
|
|
|
|
|
|
/** The memory request flags (from translation). */
|
|
|
|
unsigned memReqFlags;
|
|
|
|
|
|
|
|
/** How many source registers are ready. */
|
|
|
|
unsigned readyRegs;
|
|
|
|
|
|
|
|
/** An instruction src/dest has to be one of these types */
|
|
|
|
union InstValue {
|
|
|
|
uint64_t integer;
|
|
|
|
double dbl;
|
|
|
|
};
|
|
|
|
|
2009-05-12 21:01:14 +02:00
|
|
|
//@TODO: Naming Convention for Enums?
|
|
|
|
enum ResultType {
|
|
|
|
None,
|
|
|
|
Integer,
|
|
|
|
Float,
|
|
|
|
Double
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
/** Result of an instruction execution */
|
|
|
|
struct InstResult {
|
2009-05-12 21:01:14 +02:00
|
|
|
ResultType type;
|
2009-02-11 00:49:29 +01:00
|
|
|
InstValue val;
|
|
|
|
Tick tick;
|
2009-05-12 21:01:14 +02:00
|
|
|
|
|
|
|
InstResult()
|
|
|
|
: type(None), tick(0)
|
|
|
|
{}
|
2009-02-11 00:49:29 +01:00
|
|
|
};
|
|
|
|
|
|
|
|
/** The source of the instruction; assumes for now that there's only one
|
|
|
|
* destination register.
|
|
|
|
*/
|
|
|
|
InstValue instSrc[MaxInstSrcRegs];
|
|
|
|
|
|
|
|
/** The result of the instruction; assumes for now that there's only one
|
|
|
|
* destination register.
|
|
|
|
*/
|
|
|
|
InstResult instResult[MaxInstDestRegs];
|
|
|
|
|
|
|
|
/** PC of this instruction. */
|
|
|
|
Addr PC;
|
|
|
|
|
|
|
|
/** Next non-speculative PC. It is not filled in at fetch, but rather
|
|
|
|
* once the target of the branch is truly known (either decode or
|
|
|
|
* execute).
|
|
|
|
*/
|
|
|
|
Addr nextPC;
|
|
|
|
|
|
|
|
/** Next next non-speculative PC. It is not filled in at fetch, but rather
|
|
|
|
* once the target of the branch is truly known (either decode or
|
|
|
|
* execute).
|
|
|
|
*/
|
|
|
|
Addr nextNPC;
|
|
|
|
|
|
|
|
/** Predicted next PC. */
|
|
|
|
Addr predPC;
|
|
|
|
|
2009-05-12 21:01:14 +02:00
|
|
|
/** Predicted next NPC. */
|
|
|
|
Addr predNPC;
|
|
|
|
|
|
|
|
/** Predicted next microPC */
|
|
|
|
Addr predMicroPC;
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
/** Address to fetch from */
|
|
|
|
Addr fetchAddr;
|
|
|
|
|
|
|
|
/** Address to get/write data from/to */
|
|
|
|
Addr memAddr;
|
|
|
|
|
|
|
|
/** Whether or not the source register is ready.
|
|
|
|
* @todo: Not sure this should be here vs the derived class.
|
|
|
|
*/
|
|
|
|
bool _readySrcRegIdx[MaxInstSrcRegs];
|
|
|
|
|
|
|
|
/** Physical register index of the destination registers of this
|
|
|
|
* instruction.
|
|
|
|
*/
|
|
|
|
PhysRegIndex _destRegIdx[MaxInstDestRegs];
|
|
|
|
|
|
|
|
/** Physical register index of the source registers of this
|
|
|
|
* instruction.
|
|
|
|
*/
|
|
|
|
PhysRegIndex _srcRegIdx[MaxInstSrcRegs];
|
|
|
|
|
|
|
|
/** Physical register index of the previous producers of the
|
|
|
|
* architected destinations.
|
|
|
|
*/
|
|
|
|
PhysRegIndex _prevDestRegIdx[MaxInstDestRegs];
|
|
|
|
|
|
|
|
int nextStage;
|
|
|
|
|
|
|
|
/* vars to keep track of InstStage's - used for resource sched defn */
|
|
|
|
int nextInstStageNum;
|
|
|
|
ThePipeline::InstStage *currentInstStage;
|
|
|
|
std::list<ThePipeline::InstStage*> instStageList;
|
|
|
|
|
|
|
|
private:
|
|
|
|
/** Function to initialize variables in the constructors. */
|
|
|
|
void initVars();
|
|
|
|
|
|
|
|
public:
|
|
|
|
Tick memTime;
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// BASE INSTRUCTION INFORMATION.
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////////////
|
2009-05-12 21:01:14 +02:00
|
|
|
std::string instName() { return staticInst->getName(); }
|
|
|
|
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
void setMachInst(ExtMachInst inst);
|
|
|
|
|
|
|
|
/** Sets the StaticInst. */
|
|
|
|
void setStaticInst(StaticInstPtr &static_inst);
|
|
|
|
|
|
|
|
/** Sets the sequence number. */
|
|
|
|
void setSeqNum(InstSeqNum seq_num) { seqNum = seq_num; }
|
|
|
|
|
|
|
|
/** Sets the ASID. */
|
|
|
|
void setASID(short addr_space_id) { asid = addr_space_id; }
|
|
|
|
|
|
|
|
/** Reads the thread id. */
|
|
|
|
short readTid() { return threadNumber; }
|
|
|
|
|
|
|
|
/** Sets the thread id. */
|
|
|
|
void setTid(unsigned tid) { threadNumber = tid; }
|
|
|
|
|
|
|
|
void setVpn(int id) { virtProcNumber = id; }
|
|
|
|
|
|
|
|
int readVpn() { return virtProcNumber; }
|
|
|
|
|
|
|
|
/** Sets the pointer to the thread state. */
|
|
|
|
void setThreadState(InOrderThreadState *state) { thread = state; }
|
|
|
|
|
|
|
|
/** Returns the thread context. */
|
|
|
|
ThreadContext *tcBase() { return thread->getTC(); }
|
|
|
|
|
|
|
|
/** Returns the fault type. */
|
|
|
|
Fault getFault() { return fault; }
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// INSTRUCTION TYPES - Forward checks to StaticInst object.
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
bool isNop() const { return staticInst->isNop(); }
|
|
|
|
bool isMemRef() const { return staticInst->isMemRef(); }
|
|
|
|
bool isLoad() const { return staticInst->isLoad(); }
|
|
|
|
bool isStore() const { return staticInst->isStore(); }
|
|
|
|
bool isStoreConditional() const
|
|
|
|
{ return staticInst->isStoreConditional(); }
|
|
|
|
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
|
|
|
|
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
|
|
|
|
bool isCopy() const { return staticInst->isCopy(); }
|
|
|
|
bool isInteger() const { return staticInst->isInteger(); }
|
|
|
|
bool isFloating() const { return staticInst->isFloating(); }
|
|
|
|
bool isControl() const { return staticInst->isControl(); }
|
|
|
|
bool isCall() const { return staticInst->isCall(); }
|
|
|
|
bool isReturn() const { return staticInst->isReturn(); }
|
|
|
|
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
|
|
|
|
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
|
|
|
|
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
|
|
|
|
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
|
|
|
|
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
|
|
|
|
|
|
|
|
bool isThreadSync() const { return staticInst->isThreadSync(); }
|
|
|
|
bool isSerializing() const { return staticInst->isSerializing(); }
|
|
|
|
bool isSerializeBefore() const
|
|
|
|
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
|
|
|
|
bool isSerializeAfter() const
|
|
|
|
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
|
|
|
|
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
|
|
|
|
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
|
|
|
|
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
|
|
|
|
bool isQuiesce() const { return staticInst->isQuiesce(); }
|
|
|
|
bool isIprAccess() const { return staticInst->isIprAccess(); }
|
|
|
|
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
|
|
|
|
|
|
|
|
/////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// RESOURCE SCHEDULING
|
|
|
|
//
|
|
|
|
/////////////////////////////////////////////
|
|
|
|
|
|
|
|
void setNextStage(int stage_num) { nextStage = stage_num; }
|
|
|
|
int getNextStage() { return nextStage; }
|
|
|
|
|
|
|
|
ThePipeline::InstStage *addStage();
|
|
|
|
ThePipeline::InstStage *addStage(int stage);
|
|
|
|
ThePipeline::InstStage *currentStage() { return currentInstStage; }
|
|
|
|
void deleteStages();
|
|
|
|
|
|
|
|
/** Add A Entry To Reource Schedule */
|
|
|
|
void addToSched(ThePipeline::ScheduleEntry* sched_entry)
|
|
|
|
{ resSched.push(sched_entry); }
|
|
|
|
|
|
|
|
|
|
|
|
/** Print Resource Schedule */
|
2009-05-12 21:01:14 +02:00
|
|
|
/** @NOTE: DEBUG ONLY */
|
2009-02-11 00:49:29 +01:00
|
|
|
void printSched()
|
|
|
|
{
|
2009-05-12 21:01:14 +02:00
|
|
|
ThePipeline::ResSchedule tempSched;
|
2009-02-11 00:49:29 +01:00
|
|
|
std::cerr << "\tInst. Res. Schedule: ";
|
|
|
|
while (!resSched.empty()) {
|
|
|
|
std::cerr << '\t' << resSched.top()->stageNum << "-"
|
|
|
|
<< resSched.top()->resNum << ", ";
|
|
|
|
|
|
|
|
tempSched.push(resSched.top());
|
|
|
|
resSched.pop();
|
|
|
|
}
|
|
|
|
|
|
|
|
std::cerr << std::endl;
|
|
|
|
resSched = tempSched;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Return Next Resource Stage To Be Used */
|
|
|
|
int nextResStage()
|
|
|
|
{
|
|
|
|
if (resSched.empty())
|
|
|
|
return -1;
|
|
|
|
else
|
|
|
|
return resSched.top()->stageNum;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Return Next Resource To Be Used */
|
|
|
|
int nextResource()
|
|
|
|
{
|
|
|
|
if (resSched.empty())
|
|
|
|
return -1;
|
|
|
|
else
|
|
|
|
return resSched.top()->resNum;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Remove & Deallocate a schedule entry */
|
|
|
|
void popSchedEntry()
|
|
|
|
{
|
|
|
|
if (!resSched.empty()) {
|
|
|
|
ThePipeline::ScheduleEntry* sked = resSched.top();
|
|
|
|
resSched.pop();
|
|
|
|
delete sked;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Release a Resource Request (Currently Unused) */
|
|
|
|
void releaseReq(ResourceRequest* req);
|
|
|
|
|
|
|
|
////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// INSTRUCTION EXECUTION
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////
|
|
|
|
/** Returns the opclass of this instruction. */
|
|
|
|
OpClass opClass() const { return staticInst->opClass(); }
|
|
|
|
|
|
|
|
/** Executes the instruction.*/
|
|
|
|
Fault execute();
|
|
|
|
|
|
|
|
unsigned curResSlot;
|
|
|
|
|
|
|
|
unsigned getCurResSlot() { return curResSlot; }
|
|
|
|
|
|
|
|
void setCurResSlot(unsigned slot_num) { curResSlot = slot_num; }
|
|
|
|
|
|
|
|
/** Calls a syscall. */
|
|
|
|
void syscall(int64_t callnum);
|
|
|
|
void prefetch(Addr addr, unsigned flags);
|
|
|
|
void writeHint(Addr addr, int size, unsigned flags);
|
|
|
|
Fault copySrcTranslate(Addr src);
|
|
|
|
Fault copy(Addr dest);
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// MULTITHREADING INTERFACE TO CPU MODELS
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
virtual void deallocateContext(int thread_num);
|
|
|
|
|
|
|
|
virtual void enableVirtProcElement(unsigned vpe);
|
|
|
|
virtual void disableVirtProcElement(unsigned vpe);
|
|
|
|
|
|
|
|
virtual void enableMultiThreading(unsigned vpe);
|
|
|
|
virtual void disableMultiThreading(unsigned vpe);
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// PROGRAM COUNTERS - PC/NPC/NPC
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
/** Read the PC of this instruction. */
|
|
|
|
const Addr readPC() const { return PC; }
|
|
|
|
|
|
|
|
/** Sets the PC of this instruction. */
|
|
|
|
void setPC(Addr pc) { PC = pc; }
|
|
|
|
|
|
|
|
/** Returns the next PC. This could be the speculative next PC if it is
|
|
|
|
* called prior to the actual branch target being calculated.
|
|
|
|
*/
|
|
|
|
Addr readNextPC() { return nextPC; }
|
|
|
|
|
|
|
|
/** Set the next PC of this instruction (its actual target). */
|
|
|
|
void setNextPC(uint64_t val) { nextPC = val; }
|
|
|
|
|
|
|
|
/** Returns the next NPC. This could be the speculative next NPC if it is
|
|
|
|
* called prior to the actual branch target being calculated.
|
|
|
|
*/
|
2009-05-12 21:01:14 +02:00
|
|
|
Addr readNextNPC()
|
|
|
|
{
|
|
|
|
#if ISA_HAS_DELAY_SLOT
|
|
|
|
return nextNPC;
|
|
|
|
#else
|
|
|
|
return nextPC + sizeof(TheISA::MachInst);
|
|
|
|
#endif
|
|
|
|
}
|
2009-02-11 00:49:29 +01:00
|
|
|
|
|
|
|
/** Set the next PC of this instruction (its actual target). */
|
|
|
|
void setNextNPC(uint64_t val) { nextNPC = val; }
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// BRANCH PREDICTION
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////////////
|
|
|
|
/** Set the predicted target of this current instruction. */
|
|
|
|
void setPredTarg(Addr predicted_PC) { predPC = predicted_PC; }
|
|
|
|
|
|
|
|
/** Returns the predicted target of the branch. */
|
|
|
|
Addr readPredTarg() { return predPC; }
|
|
|
|
|
2009-05-12 21:01:14 +02:00
|
|
|
/** Returns the predicted PC immediately after the branch. */
|
|
|
|
Addr readPredPC() { return predPC; }
|
|
|
|
|
|
|
|
/** Returns the predicted PC two instructions after the branch */
|
|
|
|
Addr readPredNPC() { return predNPC; }
|
|
|
|
|
|
|
|
/** Returns the predicted micro PC after the branch */
|
|
|
|
Addr readPredMicroPC() { return predMicroPC; }
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
/** Returns whether the instruction was predicted taken or not. */
|
|
|
|
bool predTaken() { return predictTaken; }
|
|
|
|
|
|
|
|
/** Returns whether the instruction mispredicted. */
|
|
|
|
bool mispredicted()
|
|
|
|
{
|
2009-05-12 21:01:14 +02:00
|
|
|
#if ISA_HAS_DELAY_SLOT
|
|
|
|
return predPC != nextNPC;
|
|
|
|
#else
|
|
|
|
return predPC != nextPC;
|
|
|
|
#endif
|
2009-02-11 00:49:29 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns whether the instruction mispredicted. */
|
|
|
|
bool mistargeted() { return predPC != nextNPC; }
|
|
|
|
|
|
|
|
/** Returns the branch target address. */
|
|
|
|
Addr branchTarget() const { return staticInst->branchTarget(PC); }
|
|
|
|
|
|
|
|
/** Checks whether or not this instruction has had its branch target
|
|
|
|
* calculated yet. For now it is not utilized and is hacked to be
|
|
|
|
* always false.
|
|
|
|
* @todo: Actually use this instruction.
|
|
|
|
*/
|
|
|
|
bool doneTargCalc() { return false; }
|
|
|
|
|
|
|
|
void setBranchPred(bool prediction) { predictTaken = prediction; }
|
|
|
|
|
|
|
|
int squashingStage;
|
|
|
|
|
|
|
|
bool predictTaken;
|
|
|
|
|
|
|
|
bool procDelaySlotOnMispred;
|
|
|
|
|
|
|
|
////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// MEMORY ACCESS
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////
|
|
|
|
/**
|
|
|
|
* Does a read to a given address.
|
|
|
|
* @param addr The address to read.
|
|
|
|
* @param data The read's data is written into this parameter.
|
|
|
|
* @param flags The request's flags.
|
|
|
|
* @return Returns any fault due to the read.
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
Fault read(Addr addr, T &data, unsigned flags);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Does a write to a given address.
|
|
|
|
* @param data The data to be written.
|
|
|
|
* @param addr The address to write to.
|
|
|
|
* @param flags The request's flags.
|
|
|
|
* @param res The result of the write (for load locked/store conditionals).
|
|
|
|
* @return Returns any fault due to the write.
|
|
|
|
*/
|
|
|
|
template <class T>
|
|
|
|
Fault write(T data, Addr addr, unsigned flags,
|
|
|
|
uint64_t *res);
|
|
|
|
|
|
|
|
/** Initiates a memory access - Calculate Eff. Addr & Initiate Memory Access
|
|
|
|
* Only valid for memory operations.
|
|
|
|
*/
|
|
|
|
Fault initiateAcc();
|
|
|
|
|
|
|
|
/** Completes a memory access - Only valid for memory operations. */
|
|
|
|
Fault completeAcc(Packet *pkt);
|
|
|
|
|
|
|
|
/** Calculates Eff. Addr. part of a memory instruction. */
|
|
|
|
Fault calcEA();
|
|
|
|
|
|
|
|
/** Read Effective Address from instruction & do memory access */
|
|
|
|
Fault memAccess();
|
|
|
|
|
2009-05-12 21:01:15 +02:00
|
|
|
RequestPtr fetchMemReq;
|
|
|
|
RequestPtr dataMemReq;
|
2009-02-11 00:49:29 +01:00
|
|
|
|
|
|
|
bool memAddrReady;
|
|
|
|
|
|
|
|
bool validMemAddr()
|
|
|
|
{ return memAddrReady; }
|
|
|
|
|
|
|
|
void setMemAddr(Addr addr)
|
|
|
|
{ memAddr = addr; memAddrReady = true;}
|
|
|
|
|
|
|
|
void unsetMemAddr()
|
|
|
|
{ memAddrReady = false;}
|
|
|
|
|
|
|
|
Addr getMemAddr()
|
|
|
|
{ return memAddr; }
|
|
|
|
|
|
|
|
int getMemAccSize() { return staticInst->memAccSize(this); }
|
|
|
|
|
|
|
|
int getMemFlags() { return staticInst->memAccFlags(); }
|
|
|
|
|
|
|
|
/** Sets the effective address. */
|
|
|
|
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
|
|
|
|
|
|
|
|
/** Returns the effective address. */
|
|
|
|
const Addr &getEA() const { return instEffAddr; }
|
|
|
|
|
|
|
|
/** Returns whether or not the eff. addr. calculation has been completed. */
|
|
|
|
bool doneEACalc() { return eaCalcDone; }
|
|
|
|
|
|
|
|
/** Returns whether or not the eff. addr. source registers are ready.
|
|
|
|
* Assume that src registers 1..n-1 are the ones that the
|
|
|
|
* EA calc depends on. (i.e. src reg 0 is the source of the data to be
|
|
|
|
* stored)
|
|
|
|
*/
|
|
|
|
bool eaSrcsReady()
|
|
|
|
{
|
|
|
|
for (int i = 1; i < numSrcRegs(); ++i) {
|
|
|
|
if (!_readySrcRegIdx[i])
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// SOURCE-DESTINATION REGISTER INDEXING
|
|
|
|
//
|
|
|
|
//////////////////////////////////////////////////
|
|
|
|
/** Returns the number of source registers. */
|
|
|
|
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
|
|
|
|
|
|
|
|
/** Returns the number of destination registers. */
|
|
|
|
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
|
|
|
|
|
|
|
|
// the following are used to track physical register usage
|
|
|
|
// for machines with separate int & FP reg files
|
|
|
|
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
|
|
|
|
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
|
|
|
|
|
|
|
|
/** Returns the logical register index of the i'th destination register. */
|
|
|
|
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
|
|
|
|
|
|
|
|
/** Returns the logical register index of the i'th source register. */
|
|
|
|
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// RENAME/PHYSICAL REGISTER FILE SUPPORT
|
|
|
|
//
|
|
|
|
//////////////////////////////////////////////////
|
|
|
|
/** Returns the physical register index of the i'th destination
|
|
|
|
* register.
|
|
|
|
*/
|
|
|
|
PhysRegIndex renamedDestRegIdx(int idx) const
|
|
|
|
{
|
|
|
|
return _destRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the physical register index of the i'th source register. */
|
|
|
|
PhysRegIndex renamedSrcRegIdx(int idx) const
|
|
|
|
{
|
|
|
|
return _srcRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns the physical register index of the previous physical register
|
|
|
|
* that remapped to the same logical register index.
|
|
|
|
*/
|
|
|
|
PhysRegIndex prevDestRegIdx(int idx) const
|
|
|
|
{
|
|
|
|
return _prevDestRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Returns if a source register is ready. */
|
|
|
|
bool isReadySrcRegIdx(int idx) const
|
|
|
|
{
|
|
|
|
return this->_readySrcRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Records that one of the source registers is ready. */
|
|
|
|
void markSrcRegReady()
|
|
|
|
{
|
|
|
|
if (++readyRegs == numSrcRegs()) {
|
|
|
|
status.set(CanIssue);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Marks a specific register as ready. */
|
|
|
|
void markSrcRegReady(RegIndex src_idx)
|
|
|
|
{
|
|
|
|
_readySrcRegIdx[src_idx] = true;
|
|
|
|
|
|
|
|
markSrcRegReady();
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Renames a destination register to a physical register. Also records
|
|
|
|
* the previous physical register that the logical register mapped to.
|
|
|
|
*/
|
|
|
|
void renameDestReg(int idx,
|
|
|
|
PhysRegIndex renamed_dest,
|
|
|
|
PhysRegIndex previous_rename)
|
|
|
|
{
|
|
|
|
_destRegIdx[idx] = renamed_dest;
|
|
|
|
_prevDestRegIdx[idx] = previous_rename;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Renames a source logical register to the physical register which
|
|
|
|
* has/will produce that logical register's result.
|
|
|
|
* @todo: add in whether or not the source register is ready.
|
|
|
|
*/
|
|
|
|
void renameSrcReg(int idx, PhysRegIndex renamed_src)
|
|
|
|
{
|
|
|
|
_srcRegIdx[idx] = renamed_src;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
PhysRegIndex readDestRegIdx(int idx)
|
|
|
|
{
|
|
|
|
return _destRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
void setDestRegIdx(int idx, PhysRegIndex dest_idx)
|
|
|
|
{
|
|
|
|
_destRegIdx[idx] = dest_idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
int getDestIdxNum(PhysRegIndex dest_idx)
|
|
|
|
{
|
|
|
|
for (int i=0; i < staticInst->numDestRegs(); i++) {
|
|
|
|
if (_destRegIdx[i] == dest_idx)
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
PhysRegIndex readSrcRegIdx(int idx)
|
|
|
|
{
|
|
|
|
return _srcRegIdx[idx];
|
|
|
|
}
|
|
|
|
|
|
|
|
void setSrcRegIdx(int idx, PhysRegIndex src_idx)
|
|
|
|
{
|
|
|
|
_srcRegIdx[idx] = src_idx;
|
|
|
|
}
|
|
|
|
|
|
|
|
int getSrcIdxNum(PhysRegIndex src_idx)
|
|
|
|
{
|
|
|
|
for (int i=0; i < staticInst->numSrcRegs(); i++) {
|
|
|
|
if (_srcRegIdx[i] == src_idx)
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// SOURCE-DESTINATION REGISTER VALUES
|
|
|
|
//
|
|
|
|
////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/** Functions that sets an integer or floating point
|
|
|
|
* source register to a value. */
|
|
|
|
void setIntSrc(int idx, uint64_t val);
|
|
|
|
void setFloatSrc(int idx, FloatReg val, int width = 32);
|
|
|
|
void setFloatRegBitsSrc(int idx, uint64_t val);
|
|
|
|
|
|
|
|
uint64_t* getIntSrcPtr(int idx) { return &instSrc[idx].integer; }
|
|
|
|
uint64_t readIntSrc(int idx) { return instSrc[idx].integer; }
|
|
|
|
|
|
|
|
/** These Instructions read a integer/float/misc. source register
|
|
|
|
* value in the instruction. The instruction's execute function will
|
|
|
|
* call these and it is the interface that is used by the ISA descr.
|
|
|
|
* language (which is why the name isnt readIntSrc(...)) Note: That
|
|
|
|
* the source reg. value is set using the setSrcReg() function.
|
|
|
|
*/
|
|
|
|
IntReg readIntRegOperand(const StaticInst *si, int idx, unsigned tid=0);
|
|
|
|
FloatReg readFloatRegOperand(const StaticInst *si, int idx,
|
|
|
|
int width = TheISA::SingleWidth);
|
2009-05-12 21:01:14 +02:00
|
|
|
TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx,
|
2009-02-11 00:49:29 +01:00
|
|
|
int width = TheISA::SingleWidth);
|
|
|
|
MiscReg readMiscReg(int misc_reg);
|
|
|
|
MiscReg readMiscRegNoEffect(int misc_reg);
|
|
|
|
MiscReg readMiscRegOperand(const StaticInst *si, int idx);
|
|
|
|
MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx);
|
|
|
|
|
|
|
|
/** Returns the result value instruction. */
|
2009-05-12 21:01:14 +02:00
|
|
|
ResultType resultType(int idx)
|
|
|
|
{
|
|
|
|
return instResult[idx].type;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t readIntResult(int idx)
|
|
|
|
{
|
|
|
|
return instResult[idx].val.integer;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Depending on type, return Float or Double */
|
|
|
|
double readFloatResult(int idx)
|
|
|
|
{
|
|
|
|
//assert(instResult[idx].type != Integer && instResult[idx].type != None);
|
|
|
|
//@todo: TypeCast FLOAT onto DOUBLE instead of separate value
|
|
|
|
return (instResult[idx].type == Float) ?
|
|
|
|
(float) instResult[idx].val.dbl : instResult[idx].val.dbl;
|
|
|
|
}
|
|
|
|
|
|
|
|
double readDoubleResult(int idx)
|
|
|
|
{
|
|
|
|
assert(instResult[idx].type == Double);
|
|
|
|
return instResult[idx].val.dbl;
|
|
|
|
}
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
Tick readResultTime(int idx) { return instResult[idx].tick; }
|
|
|
|
|
|
|
|
uint64_t* getIntResultPtr(int idx) { return &instResult[idx].val.integer; }
|
|
|
|
|
|
|
|
/** This is the interface that an instruction will use to write
|
|
|
|
* it's destination register.
|
|
|
|
*/
|
|
|
|
void setIntRegOperand(const StaticInst *si, int idx, IntReg val);
|
|
|
|
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
|
|
|
|
int width = TheISA::SingleWidth);
|
2009-05-12 21:01:14 +02:00
|
|
|
void setFloatRegOperandBits(const StaticInst *si, int idx, TheISA::FloatRegBits val,
|
2009-02-11 00:49:29 +01:00
|
|
|
int width = TheISA::SingleWidth);
|
|
|
|
void setMiscReg(int misc_reg, const MiscReg &val);
|
|
|
|
void setMiscRegNoEffect(int misc_reg, const MiscReg &val);
|
|
|
|
void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val);
|
|
|
|
void setMiscRegOperandNoEffect(const StaticInst *si, int idx, const MiscReg &val);
|
|
|
|
|
|
|
|
virtual uint64_t readRegOtherThread(unsigned idx, int tid = -1);
|
|
|
|
virtual void setRegOtherThread(unsigned idx, const uint64_t &val, int tid = -1);
|
|
|
|
|
2009-05-12 21:01:13 +02:00
|
|
|
/** Sets the number of consecutive store conditional failures. */
|
|
|
|
void setStCondFailures(unsigned sc_failures)
|
|
|
|
{ thread->storeCondFailures = sc_failures; }
|
|
|
|
|
2009-02-11 00:49:29 +01:00
|
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// INSTRUCTION STATUS FLAGS (READ/SET)
|
|
|
|
//
|
|
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
/** Sets this instruction as entered on the CPU Reg Dep Map */
|
|
|
|
void setRegDepEntry() { status.set(RegDepMapEntry); }
|
|
|
|
|
|
|
|
/** Returns whether or not the entry is on the CPU Reg Dep Map */
|
|
|
|
bool isRegDepEntry() const { return status[RegDepMapEntry]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as completed. */
|
|
|
|
void setCompleted() { status.set(Completed); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction is completed. */
|
|
|
|
bool isCompleted() const { return status[Completed]; }
|
|
|
|
|
|
|
|
/** Marks the result as ready. */
|
|
|
|
void setResultReady() { status.set(ResultReady); }
|
|
|
|
|
|
|
|
/** Returns whether or not the result is ready. */
|
|
|
|
bool isResultReady() const { return status[ResultReady]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as ready to issue. */
|
|
|
|
void setCanIssue() { status.set(CanIssue); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction is ready to issue. */
|
|
|
|
bool readyToIssue() const { return status[CanIssue]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as issued from the IQ. */
|
|
|
|
void setIssued() { status.set(Issued); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction has issued. */
|
|
|
|
bool isIssued() const { return status[Issued]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as executed. */
|
|
|
|
void setExecuted() { status.set(Executed); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction has executed. */
|
|
|
|
bool isExecuted() const { return status[Executed]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as ready to commit. */
|
|
|
|
void setCanCommit() { status.set(CanCommit); }
|
|
|
|
|
|
|
|
/** Clears this instruction as being ready to commit. */
|
|
|
|
void clearCanCommit() { status.reset(CanCommit); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction is ready to commit. */
|
|
|
|
bool readyToCommit() const { return status[CanCommit]; }
|
|
|
|
|
|
|
|
void setAtCommit() { status.set(AtCommit); }
|
|
|
|
|
|
|
|
bool isAtCommit() { return status[AtCommit]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as committed. */
|
|
|
|
void setCommitted() { status.set(Committed); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction is committed. */
|
|
|
|
bool isCommitted() const { return status[Committed]; }
|
|
|
|
|
|
|
|
/** Sets this instruction as squashed. */
|
|
|
|
void setSquashed() { status.set(Squashed); }
|
|
|
|
|
|
|
|
/** Returns whether or not this instruction is squashed. */
|
|
|
|
bool isSquashed() const { return status[Squashed]; }
|
|
|
|
|
|
|
|
/** Temporarily sets this instruction as a serialize before instruction. */
|
|
|
|
void setSerializeBefore() { status.set(SerializeBefore); }
|
|
|
|
|
|
|
|
/** Clears the serializeBefore part of this instruction. */
|
|
|
|
void clearSerializeBefore() { status.reset(SerializeBefore); }
|
|
|
|
|
|
|
|
/** Checks if this serializeBefore is only temporarily set. */
|
|
|
|
bool isTempSerializeBefore() { return status[SerializeBefore]; }
|
|
|
|
|
|
|
|
/** Temporarily sets this instruction as a serialize after instruction. */
|
|
|
|
void setSerializeAfter() { status.set(SerializeAfter); }
|
|
|
|
|
|
|
|
/** Clears the serializeAfter part of this instruction.*/
|
|
|
|
void clearSerializeAfter() { status.reset(SerializeAfter); }
|
|
|
|
|
|
|
|
/** Checks if this serializeAfter is only temporarily set. */
|
|
|
|
bool isTempSerializeAfter() { return status[SerializeAfter]; }
|
|
|
|
|
|
|
|
/** Sets the serialization part of this instruction as handled. */
|
|
|
|
void setSerializeHandled() { status.set(SerializeHandled); }
|
|
|
|
|
|
|
|
/** Checks if the serialization part of this instruction has been
|
|
|
|
* handled. This does not apply to the temporary serializing
|
|
|
|
* state; it only applies to this instruction's own permanent
|
|
|
|
* serializing state.
|
|
|
|
*/
|
|
|
|
bool isSerializeHandled() { return status[SerializeHandled]; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
/** Instruction effective address.
|
|
|
|
* @todo: Consider if this is necessary or not.
|
|
|
|
*/
|
|
|
|
Addr instEffAddr;
|
|
|
|
|
|
|
|
/** Whether or not the effective address calculation is completed.
|
|
|
|
* @todo: Consider if this is necessary or not.
|
|
|
|
*/
|
|
|
|
bool eaCalcDone;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** Whether or not the memory operation is done. */
|
|
|
|
bool memOpDone;
|
|
|
|
|
|
|
|
public:
|
|
|
|
/** Load queue index. */
|
|
|
|
int16_t lqIdx;
|
|
|
|
|
|
|
|
/** Store queue index. */
|
|
|
|
int16_t sqIdx;
|
|
|
|
|
|
|
|
/** Iterator pointing to this BaseDynInst in the list of all insts. */
|
|
|
|
ListIt instListIt;
|
|
|
|
|
|
|
|
/** Returns iterator to this instruction in the list of all insts. */
|
|
|
|
ListIt &getInstListIt() { return instListIt; }
|
|
|
|
|
|
|
|
/** Sets iterator for this instruction in the list of all insts. */
|
|
|
|
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
|
|
|
|
|
|
|
|
/** Count of total number of dynamic instructions. */
|
|
|
|
static int instcount;
|
|
|
|
|
|
|
|
/** Dumps out contents of this BaseDynInst. */
|
|
|
|
void dump();
|
|
|
|
|
|
|
|
/** Dumps out contents of this BaseDynInst into given string. */
|
|
|
|
void dump(std::string &outstring);
|
|
|
|
|
|
|
|
|
|
|
|
//inline int curCount() { return curCount(); }
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#endif // __CPU_BASE_DYN_INST_HH__
|