Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
/*
|
mem: Add crossbar latencies
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
2015-03-02 10:00:46 +01:00
|
|
|
* Copyright (c) 2011-2015 ARM Limited
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
* All rights reserved
|
|
|
|
*
|
|
|
|
* The license below extends only to copyright in the software and shall
|
|
|
|
* not be construed as granting a license to any other intellectual
|
|
|
|
* property including but not limited to intellectual property relating
|
|
|
|
* to a hardware implementation of the functionality of the software
|
|
|
|
* licensed hereunder. You may use the software subject to the license
|
|
|
|
* terms below provided that you ensure that this notice is replicated
|
|
|
|
* unmodified and in its entirety in all distributions of the software,
|
|
|
|
* modified or unmodified, in source code or in binary form.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2006 The Regents of The University of Michigan
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
* met: redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer;
|
|
|
|
* redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution;
|
|
|
|
* neither the name of the copyright holders nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Authors: Ali Saidi
|
|
|
|
* Andreas Hansson
|
|
|
|
* William Wang
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
2014-09-20 23:18:32 +02:00
|
|
|
* Definition of a non-coherent crossbar object.
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
*/
|
|
|
|
|
|
|
|
#include "base/misc.hh"
|
|
|
|
#include "base/trace.hh"
|
2014-09-20 23:18:32 +02:00
|
|
|
#include "debug/NoncoherentXBar.hh"
|
|
|
|
#include "debug/XBar.hh"
|
|
|
|
#include "mem/noncoherent_xbar.hh"
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::NoncoherentXBar(const NoncoherentXBarParams *p)
|
|
|
|
: BaseXBar(p)
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
|
|
|
// create the ports based on the size of the master and slave
|
|
|
|
// vector ports, and the presence of the default port, the ports
|
|
|
|
// are enumerated starting from zero
|
|
|
|
for (int i = 0; i < p->port_master_connection_count; ++i) {
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = csprintf("%s.master[%d]", name(), i);
|
2014-09-20 23:18:32 +02:00
|
|
|
MasterPort* bp = new NoncoherentXBarMasterPort(portName, *this, i);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
masterPorts.push_back(bp);
|
2013-05-30 18:54:01 +02:00
|
|
|
reqLayers.push_back(new ReqLayer(*bp, *this,
|
|
|
|
csprintf(".reqLayer%d", i)));
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// see if we have a default slave device connected and if so add
|
|
|
|
// our corresponding master port
|
|
|
|
if (p->port_default_connection_count) {
|
|
|
|
defaultPortID = masterPorts.size();
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = name() + ".default";
|
2014-09-20 23:18:32 +02:00
|
|
|
MasterPort* bp = new NoncoherentXBarMasterPort(portName, *this,
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
defaultPortID);
|
|
|
|
masterPorts.push_back(bp);
|
2013-05-30 18:54:01 +02:00
|
|
|
reqLayers.push_back(new ReqLayer(*bp, *this, csprintf(".reqLayer%d",
|
|
|
|
defaultPortID)));
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// create the slave ports, once again starting at zero
|
|
|
|
for (int i = 0; i < p->port_slave_connection_count; ++i) {
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = csprintf("%s.slave[%d]", name(), i);
|
2015-07-03 16:14:44 +02:00
|
|
|
QueuedSlavePort* bp = new NoncoherentXBarSlavePort(portName, *this, i);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
slavePorts.push_back(bp);
|
2013-05-30 18:54:01 +02:00
|
|
|
respLayers.push_back(new RespLayer(*bp, *this,
|
|
|
|
csprintf(".respLayer%d", i)));
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
clearPortCache();
|
|
|
|
}
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::~NoncoherentXBar()
|
2013-05-30 18:54:01 +02:00
|
|
|
{
|
2014-09-20 23:18:32 +02:00
|
|
|
for (auto l: reqLayers)
|
|
|
|
delete l;
|
|
|
|
for (auto l: respLayers)
|
|
|
|
delete l;
|
2013-05-30 18:54:01 +02:00
|
|
|
}
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
bool
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
|
|
|
// determine the source port based on the id
|
|
|
|
SlavePort *src_port = slavePorts[slave_port_id];
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
// we should never see express snoops on a non-coherent crossbar
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
assert(!pkt->isExpressSnoop());
|
|
|
|
|
2013-03-26 19:46:47 +01:00
|
|
|
// determine the destination based on the address
|
2013-05-30 18:53:58 +02:00
|
|
|
PortID master_port_id = findPort(pkt->getAddr());
|
2013-03-26 19:46:47 +01:00
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
// test if the layer should be considered occupied for the current
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
// port
|
2013-05-30 18:54:01 +02:00
|
|
|
if (!reqLayers[master_port_id]->tryTiming(src_port)) {
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvTimingReq: src %s %s 0x%x BUSY\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvTimingReq: src %s %s 0x%x\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
2013-05-30 18:53:58 +02:00
|
|
|
// store size and command as they might be modified when
|
|
|
|
// forwarding the packet
|
|
|
|
unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
|
|
|
|
unsigned int pkt_cmd = pkt->cmdToIndex();
|
|
|
|
|
mem: Add crossbar latencies
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
2015-03-02 10:00:46 +01:00
|
|
|
// store the old header delay so we can restore it if needed
|
|
|
|
Tick old_header_delay = pkt->headerDelay;
|
|
|
|
|
|
|
|
// a request sees the frontend and forward latency
|
|
|
|
Tick xbar_delay = (frontendLatency + forwardLatency) * clockPeriod();
|
|
|
|
|
|
|
|
// set the packet header and payload delay
|
|
|
|
calcPacketTiming(pkt, xbar_delay);
|
|
|
|
|
|
|
|
// determine how long to be crossbar layer is busy
|
|
|
|
Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2015-01-22 11:01:14 +01:00
|
|
|
// before forwarding the packet (and possibly altering it),
|
|
|
|
// remember if we are expecting a response
|
|
|
|
const bool expect_response = pkt->needsResponse() &&
|
|
|
|
!pkt->memInhibitAsserted();
|
|
|
|
|
2013-03-26 19:46:47 +01:00
|
|
|
// since it is a normal request, attempt to send the packet
|
2013-05-30 18:53:58 +02:00
|
|
|
bool success = masterPorts[master_port_id]->sendTimingReq(pkt);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
if (!success) {
|
|
|
|
// inhibited packets should never be forced to retry
|
|
|
|
assert(!pkt->memInhibitAsserted());
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvTimingReq: src %s %s 0x%x RETRY\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
mem: Add crossbar latencies
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
2015-03-02 10:00:46 +01:00
|
|
|
// restore the header delay as it is additive
|
|
|
|
pkt->headerDelay = old_header_delay;
|
2013-02-19 11:56:06 +01:00
|
|
|
|
2013-02-19 11:56:06 +01:00
|
|
|
// occupy until the header is sent
|
2013-05-30 18:54:01 +02:00
|
|
|
reqLayers[master_port_id]->failedTiming(src_port,
|
mem: Add crossbar latencies
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
2015-03-02 10:00:46 +01:00
|
|
|
clockEdge(Cycles(1)));
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2015-01-22 11:01:14 +01:00
|
|
|
// remember where to route the response to
|
|
|
|
if (expect_response) {
|
|
|
|
assert(routeTo.find(pkt->req) == routeTo.end());
|
|
|
|
routeTo[pkt->req] = slave_port_id;
|
|
|
|
}
|
|
|
|
|
2013-05-30 18:54:01 +02:00
|
|
|
reqLayers[master_port_id]->succeededTiming(packetFinishTime);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2013-05-30 18:53:58 +02:00
|
|
|
// stats updates
|
|
|
|
pktCount[slave_port_id][master_port_id]++;
|
2014-09-20 23:18:32 +02:00
|
|
|
pktSize[slave_port_id][master_port_id] += pkt_size;
|
2013-05-30 18:53:58 +02:00
|
|
|
transDist[pkt_cmd]++;
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::recvTimingResp(PacketPtr pkt, PortID master_port_id)
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
|
|
|
// determine the source port based on the id
|
|
|
|
MasterPort *src_port = masterPorts[master_port_id];
|
|
|
|
|
2015-01-22 11:01:14 +01:00
|
|
|
// determine the destination
|
|
|
|
const auto route_lookup = routeTo.find(pkt->req);
|
|
|
|
assert(route_lookup != routeTo.end());
|
|
|
|
const PortID slave_port_id = route_lookup->second;
|
2014-12-02 12:07:56 +01:00
|
|
|
assert(slave_port_id != InvalidPortID);
|
|
|
|
assert(slave_port_id < respLayers.size());
|
2013-05-30 18:53:59 +02:00
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
// test if the layer should be considered occupied for the current
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
// port
|
2013-05-30 18:54:01 +02:00
|
|
|
if (!respLayers[slave_port_id]->tryTiming(src_port)) {
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvTimingResp: src %s %s 0x%x BUSY\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvTimingResp: src %s %s 0x%x\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
2013-05-30 18:53:58 +02:00
|
|
|
// store size and command as they might be modified when
|
|
|
|
// forwarding the packet
|
|
|
|
unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
|
|
|
|
unsigned int pkt_cmd = pkt->cmdToIndex();
|
|
|
|
|
mem: Add crossbar latencies
This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.
The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency
In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.
The latency of the response path through the xbar is set instead as
--> responseLatency.
In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;
If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;
Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
2015-03-02 10:00:46 +01:00
|
|
|
// a response sees the response latency
|
|
|
|
Tick xbar_delay = responseLatency * clockPeriod();
|
|
|
|
|
|
|
|
// set the packet header and payload delay
|
|
|
|
calcPacketTiming(pkt, xbar_delay);
|
|
|
|
|
|
|
|
// determine how long to be crossbar layer is busy
|
|
|
|
Tick packetFinishTime = clockEdge(Cycles(1)) + pkt->payloadDelay;
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2015-07-03 16:14:44 +02:00
|
|
|
// send the packet through the destination slave port, and pay for
|
|
|
|
// any outstanding latency
|
|
|
|
Tick latency = pkt->headerDelay;
|
|
|
|
pkt->headerDelay = 0;
|
|
|
|
slavePorts[slave_port_id]->schedTimingResp(pkt, curTick() + latency);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2015-01-22 11:01:14 +01:00
|
|
|
// remove the request from the routing table
|
|
|
|
routeTo.erase(route_lookup);
|
|
|
|
|
2013-05-30 18:54:01 +02:00
|
|
|
respLayers[slave_port_id]->succeededTiming(packetFinishTime);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2013-05-30 18:53:58 +02:00
|
|
|
// stats updates
|
|
|
|
pktCount[slave_port_id][master_port_id]++;
|
2014-09-20 23:18:32 +02:00
|
|
|
pktSize[slave_port_id][master_port_id] += pkt_size;
|
2013-05-30 18:53:58 +02:00
|
|
|
transDist[pkt_cmd]++;
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2012-07-09 18:35:36 +02:00
|
|
|
void
|
2015-03-02 10:00:35 +01:00
|
|
|
NoncoherentXBar::recvReqRetry(PortID master_port_id)
|
2012-07-09 18:35:36 +02:00
|
|
|
{
|
2012-07-09 18:35:37 +02:00
|
|
|
// responses never block on forwarding them, so the retry will
|
|
|
|
// always be coming from a port to which we tried to forward a
|
|
|
|
// request
|
2013-05-30 18:54:01 +02:00
|
|
|
reqLayers[master_port_id]->recvRetry();
|
2012-07-09 18:35:36 +02:00
|
|
|
}
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
Tick
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::recvAtomic(PacketPtr pkt, PortID slave_port_id)
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
slavePorts[slave_port_id]->name(), pkt->getAddr(),
|
|
|
|
pkt->cmdString());
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
unsigned int pkt_size = pkt->hasData() ? pkt->getSize() : 0;
|
|
|
|
unsigned int pkt_cmd = pkt->cmdToIndex();
|
2013-05-30 18:53:58 +02:00
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
// determine the destination port
|
2014-09-20 23:18:32 +02:00
|
|
|
PortID master_port_id = findPort(pkt->getAddr());
|
|
|
|
|
|
|
|
// stats updates for the request
|
|
|
|
pktCount[slave_port_id][master_port_id]++;
|
|
|
|
pktSize[slave_port_id][master_port_id] += pkt_size;
|
|
|
|
transDist[pkt_cmd]++;
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
// forward the request to the appropriate destination
|
2014-09-20 23:18:32 +02:00
|
|
|
Tick response_latency = masterPorts[master_port_id]->sendAtomic(pkt);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
2013-05-30 18:53:58 +02:00
|
|
|
// add the response data
|
2014-09-20 23:18:32 +02:00
|
|
|
if (pkt->isResponse()) {
|
|
|
|
pkt_size = pkt->hasData() ? pkt->getSize() : 0;
|
|
|
|
pkt_cmd = pkt->cmdToIndex();
|
|
|
|
|
|
|
|
// stats updates
|
|
|
|
pktCount[slave_port_id][master_port_id]++;
|
|
|
|
pktSize[slave_port_id][master_port_id] += pkt_size;
|
|
|
|
transDist[pkt_cmd]++;
|
|
|
|
}
|
2013-05-30 18:53:58 +02:00
|
|
|
|
2013-02-19 11:56:06 +01:00
|
|
|
// @todo: Not setting first-word time
|
2015-02-11 16:23:47 +01:00
|
|
|
pkt->payloadDelay = response_latency;
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
return response_latency;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
|
|
|
if (!pkt->isPrint()) {
|
|
|
|
// don't do DPRINTFs on PrintReq as it clutters up the output
|
2014-09-20 23:18:32 +02:00
|
|
|
DPRINTF(NoncoherentXBar,
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
"recvFunctional: packet src %s addr 0x%x cmd %s\n",
|
|
|
|
slavePorts[slave_port_id]->name(), pkt->getAddr(),
|
|
|
|
pkt->cmdString());
|
|
|
|
}
|
|
|
|
|
2015-07-03 16:14:44 +02:00
|
|
|
// since our slave ports are queued ports we need to check them as well
|
|
|
|
for (const auto& p : slavePorts) {
|
|
|
|
// if we find a response that has the data, then the
|
|
|
|
// downstream caches/memories may be out of date, so simply stop
|
|
|
|
// here
|
|
|
|
if (p->checkFunctional(pkt)) {
|
|
|
|
if (pkt->needsResponse())
|
|
|
|
pkt->makeResponse();
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
// determine the destination port
|
|
|
|
PortID dest_id = findPort(pkt->getAddr());
|
|
|
|
|
|
|
|
// forward the request to the appropriate destination
|
|
|
|
masterPorts[dest_id]->sendFunctional(pkt);
|
|
|
|
}
|
|
|
|
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar*
|
|
|
|
NoncoherentXBarParams::create()
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
2014-09-20 23:18:32 +02:00
|
|
|
return new NoncoherentXBar(this);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
}
|
2013-05-30 18:53:58 +02:00
|
|
|
|
|
|
|
void
|
2014-09-20 23:18:32 +02:00
|
|
|
NoncoherentXBar::regStats()
|
2013-05-30 18:53:58 +02:00
|
|
|
{
|
2014-09-20 23:18:32 +02:00
|
|
|
// register the stats of the base class and our layers
|
|
|
|
BaseXBar::regStats();
|
|
|
|
for (auto l: reqLayers)
|
|
|
|
l->regStats();
|
|
|
|
for (auto l: respLayers)
|
|
|
|
l->regStats();
|
2013-05-30 18:53:58 +02:00
|
|
|
}
|