Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
/*
|
2013-02-19 11:56:06 +01:00
|
|
|
* Copyright (c) 2011-2013 ARM Limited
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
* All rights reserved
|
|
|
|
*
|
|
|
|
* The license below extends only to copyright in the software and shall
|
|
|
|
* not be construed as granting a license to any other intellectual
|
|
|
|
* property including but not limited to intellectual property relating
|
|
|
|
* to a hardware implementation of the functionality of the software
|
|
|
|
* licensed hereunder. You may use the software subject to the license
|
|
|
|
* terms below provided that you ensure that this notice is replicated
|
|
|
|
* unmodified and in its entirety in all distributions of the software,
|
|
|
|
* modified or unmodified, in source code or in binary form.
|
|
|
|
*
|
|
|
|
* Copyright (c) 2006 The Regents of The University of Michigan
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are
|
|
|
|
* met: redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer;
|
|
|
|
* redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution;
|
|
|
|
* neither the name of the copyright holders nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived from
|
|
|
|
* this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* Authors: Ali Saidi
|
|
|
|
* Andreas Hansson
|
|
|
|
* William Wang
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @file
|
|
|
|
* Definition of a bus object.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "base/misc.hh"
|
|
|
|
#include "base/trace.hh"
|
|
|
|
#include "debug/Bus.hh"
|
|
|
|
#include "debug/BusAddrRanges.hh"
|
|
|
|
#include "debug/NoncoherentBus.hh"
|
|
|
|
#include "mem/noncoherent_bus.hh"
|
|
|
|
|
|
|
|
NoncoherentBus::NoncoherentBus(const NoncoherentBusParams *p)
|
2013-02-19 11:56:06 +01:00
|
|
|
: BaseBus(p), reqLayer(*this, ".reqLayer"),
|
|
|
|
respLayer(*this, ".respLayer")
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
{
|
|
|
|
// create the ports based on the size of the master and slave
|
|
|
|
// vector ports, and the presence of the default port, the ports
|
|
|
|
// are enumerated starting from zero
|
|
|
|
for (int i = 0; i < p->port_master_connection_count; ++i) {
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = csprintf("%s.master[%d]", name(), i);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
MasterPort* bp = new NoncoherentBusMasterPort(portName, *this, i);
|
|
|
|
masterPorts.push_back(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// see if we have a default slave device connected and if so add
|
|
|
|
// our corresponding master port
|
|
|
|
if (p->port_default_connection_count) {
|
|
|
|
defaultPortID = masterPorts.size();
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = name() + ".default";
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
MasterPort* bp = new NoncoherentBusMasterPort(portName, *this,
|
|
|
|
defaultPortID);
|
|
|
|
masterPorts.push_back(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
// create the slave ports, once again starting at zero
|
|
|
|
for (int i = 0; i < p->port_slave_connection_count; ++i) {
|
2012-07-09 18:35:39 +02:00
|
|
|
std::string portName = csprintf("%s.slave[%d]", name(), i);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
SlavePort* bp = new NoncoherentBusSlavePort(portName, *this, i);
|
|
|
|
slavePorts.push_back(bp);
|
|
|
|
}
|
|
|
|
|
|
|
|
clearPortCache();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
NoncoherentBus::recvTimingReq(PacketPtr pkt, PortID slave_port_id)
|
|
|
|
{
|
|
|
|
// determine the source port based on the id
|
|
|
|
SlavePort *src_port = slavePorts[slave_port_id];
|
|
|
|
|
|
|
|
// we should never see express snoops on a non-coherent bus
|
|
|
|
assert(!pkt->isExpressSnoop());
|
|
|
|
|
|
|
|
// test if the bus should be considered occupied for the current
|
|
|
|
// port
|
2012-07-09 18:35:37 +02:00
|
|
|
if (!reqLayer.tryTiming(src_port)) {
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
DPRINTF(NoncoherentBus, "recvTimingReq: src %s %s 0x%x BUSY\n",
|
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF(NoncoherentBus, "recvTimingReq: src %s %s 0x%x\n",
|
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
|
|
|
// set the source port for routing of the response
|
|
|
|
pkt->setSrc(slave_port_id);
|
|
|
|
|
|
|
|
Tick headerFinishTime = calcPacketTiming(pkt);
|
|
|
|
Tick packetFinishTime = pkt->finishTime;
|
|
|
|
|
|
|
|
// since it is a normal request, determine the destination
|
|
|
|
// based on the address and attempt to send the packet
|
|
|
|
bool success = masterPorts[findPort(pkt->getAddr())]->sendTimingReq(pkt);
|
|
|
|
|
|
|
|
if (!success) {
|
|
|
|
// inhibited packets should never be forced to retry
|
|
|
|
assert(!pkt->memInhibitAsserted());
|
|
|
|
|
|
|
|
DPRINTF(NoncoherentBus, "recvTimingReq: src %s %s 0x%x RETRY\n",
|
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
2012-07-09 18:35:37 +02:00
|
|
|
reqLayer.failedTiming(src_port, headerFinishTime);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2012-07-09 18:35:37 +02:00
|
|
|
reqLayer.succeededTiming(packetFinishTime);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool
|
|
|
|
NoncoherentBus::recvTimingResp(PacketPtr pkt, PortID master_port_id)
|
|
|
|
{
|
|
|
|
// determine the source port based on the id
|
|
|
|
MasterPort *src_port = masterPorts[master_port_id];
|
|
|
|
|
|
|
|
// test if the bus should be considered occupied for the current
|
|
|
|
// port
|
2012-07-09 18:35:37 +02:00
|
|
|
if (!respLayer.tryTiming(src_port)) {
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
DPRINTF(NoncoherentBus, "recvTimingResp: src %s %s 0x%x BUSY\n",
|
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTF(NoncoherentBus, "recvTimingResp: src %s %s 0x%x\n",
|
|
|
|
src_port->name(), pkt->cmdString(), pkt->getAddr());
|
|
|
|
|
|
|
|
calcPacketTiming(pkt);
|
|
|
|
Tick packetFinishTime = pkt->finishTime;
|
|
|
|
|
|
|
|
// send the packet to the destination through one of our slave
|
|
|
|
// ports, as determined by the destination field
|
|
|
|
bool success M5_VAR_USED = slavePorts[pkt->getDest()]->sendTimingResp(pkt);
|
|
|
|
|
|
|
|
// currently it is illegal to block responses... can lead to
|
|
|
|
// deadlock
|
|
|
|
assert(success);
|
|
|
|
|
2012-07-09 18:35:37 +02:00
|
|
|
respLayer.succeededTiming(packetFinishTime);
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2012-07-09 18:35:36 +02:00
|
|
|
void
|
|
|
|
NoncoherentBus::recvRetry()
|
|
|
|
{
|
2012-07-09 18:35:37 +02:00
|
|
|
// responses never block on forwarding them, so the retry will
|
|
|
|
// always be coming from a port to which we tried to forward a
|
|
|
|
// request
|
|
|
|
reqLayer.recvRetry();
|
2012-07-09 18:35:36 +02:00
|
|
|
}
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
Tick
|
|
|
|
NoncoherentBus::recvAtomic(PacketPtr pkt, PortID slave_port_id)
|
|
|
|
{
|
|
|
|
DPRINTF(NoncoherentBus, "recvAtomic: packet src %s addr 0x%x cmd %s\n",
|
|
|
|
slavePorts[slave_port_id]->name(), pkt->getAddr(),
|
|
|
|
pkt->cmdString());
|
|
|
|
|
|
|
|
// determine the destination port
|
|
|
|
PortID dest_id = findPort(pkt->getAddr());
|
|
|
|
|
|
|
|
// forward the request to the appropriate destination
|
|
|
|
Tick response_latency = masterPorts[dest_id]->sendAtomic(pkt);
|
|
|
|
|
|
|
|
pkt->finishTime = curTick() + response_latency;
|
|
|
|
return response_latency;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
NoncoherentBus::recvFunctional(PacketPtr pkt, PortID slave_port_id)
|
|
|
|
{
|
|
|
|
if (!pkt->isPrint()) {
|
|
|
|
// don't do DPRINTFs on PrintReq as it clutters up the output
|
|
|
|
DPRINTF(NoncoherentBus,
|
|
|
|
"recvFunctional: packet src %s addr 0x%x cmd %s\n",
|
|
|
|
slavePorts[slave_port_id]->name(), pkt->getAddr(),
|
|
|
|
pkt->cmdString());
|
|
|
|
}
|
|
|
|
|
|
|
|
// determine the destination port
|
|
|
|
PortID dest_id = findPort(pkt->getAddr());
|
|
|
|
|
|
|
|
// forward the request to the appropriate destination
|
|
|
|
masterPorts[dest_id]->sendFunctional(pkt);
|
|
|
|
}
|
|
|
|
|
2012-07-09 18:35:36 +02:00
|
|
|
unsigned int
|
2012-11-02 17:32:01 +01:00
|
|
|
NoncoherentBus::drain(DrainManager *dm)
|
2012-07-09 18:35:36 +02:00
|
|
|
{
|
2012-07-09 18:35:37 +02:00
|
|
|
// sum up the individual layers
|
2012-11-02 17:32:01 +01:00
|
|
|
return reqLayer.drain(dm) + respLayer.drain(dm);
|
2012-07-09 18:35:36 +02:00
|
|
|
}
|
|
|
|
|
Bus: Split the bus into a non-coherent and coherent bus
This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.
A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.
A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.
The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.
A bit of minor tidying up has also been done.
--HG--
rename : src/mem/bus.cc => src/mem/coherent_bus.cc
rename : src/mem/bus.hh => src/mem/coherent_bus.hh
rename : src/mem/bus.cc => src/mem/noncoherent_bus.cc
rename : src/mem/bus.hh => src/mem/noncoherent_bus.hh
2012-05-31 19:30:04 +02:00
|
|
|
NoncoherentBus*
|
|
|
|
NoncoherentBusParams::create()
|
|
|
|
{
|
|
|
|
return new NoncoherentBus(this);
|
|
|
|
}
|