gem5/src/arch/arm/utility.cc

1020 lines
30 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2009-2014 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#include <memory>
#include "arch/arm/faults.hh"
#include "arch/arm/isa_traits.hh"
#include "arch/arm/system.hh"
#include "arch/arm/tlb.hh"
#include "arch/arm/utility.hh"
#include "arch/arm/vtophys.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/base.hh"
#include "cpu/thread_context.hh"
#include "mem/fs_translating_port_proxy.hh"
#include "sim/full_system.hh"
namespace ArmISA {
void
initCPU(ThreadContext *tc, int cpuId)
{
// Reset CP15?? What does that mean -- ali
// FPEXC.EN = 0
static Fault reset = std::make_shared<Reset>();
reset->invoke(tc);
}
uint64_t
getArgument(ThreadContext *tc, int &number, uint16_t size, bool fp)
{
if (!FullSystem) {
panic("getArgument() only implemented for full system mode.\n");
M5_DUMMY_RETURN
}
if (fp)
panic("getArgument(): Floating point arguments not implemented\n");
if (inAArch64(tc)) {
if (size == (uint16_t)(-1))
size = sizeof(uint64_t);
if (number < 8 /*NumArgumentRegs64*/) {
return tc->readIntReg(number);
} else {
panic("getArgument(): No support reading stack args for AArch64\n");
}
} else {
if (size == (uint16_t)(-1))
// todo: should this not be sizeof(uint32_t) rather?
size = ArmISA::MachineBytes;
if (number < NumArgumentRegs) {
// If the argument is 64 bits, it must be in an even regiser
// number. Increment the number here if it isn't even.
if (size == sizeof(uint64_t)) {
if ((number % 2) != 0)
number++;
// Read the two halves of the data. Number is inc here to
// get the second half of the 64 bit reg.
uint64_t tmp;
tmp = tc->readIntReg(number++);
tmp |= tc->readIntReg(number) << 32;
return tmp;
} else {
return tc->readIntReg(number);
}
} else {
Addr sp = tc->readIntReg(StackPointerReg);
FSTranslatingPortProxy &vp = tc->getVirtProxy();
uint64_t arg;
if (size == sizeof(uint64_t)) {
// If the argument is even it must be aligned
if ((number % 2) != 0)
number++;
arg = vp.read<uint64_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
// since two 32 bit args == 1 64 bit arg, increment number
number++;
} else {
arg = vp.read<uint32_t>(sp +
(number-NumArgumentRegs) * sizeof(uint32_t));
}
return arg;
}
}
panic("getArgument() should always return\n");
}
void
skipFunction(ThreadContext *tc)
{
PCState newPC = tc->pcState();
if (inAArch64(tc)) {
newPC.set(tc->readIntReg(INTREG_X30));
} else {
newPC.set(tc->readIntReg(ReturnAddressReg) & ~ULL(1));
}
CheckerCPU *checker = tc->getCheckerCpuPtr();
if (checker) {
tc->pcStateNoRecord(newPC);
} else {
tc->pcState(newPC);
}
}
2010-11-15 21:04:03 +01:00
void
copyRegs(ThreadContext *src, ThreadContext *dest)
{
for (int i = 0; i < NumIntRegs; i++)
dest->setIntRegFlat(i, src->readIntRegFlat(i));
for (int i = 0; i < NumFloatRegs; i++)
dest->setFloatRegFlat(i, src->readFloatRegFlat(i));
for (int i = 0; i < NumCCRegs; i++)
dest->setCCReg(i, src->readCCReg(i));
// Copy vector registers when vector registers put to use.
assert(NumVectorRegs == 0);
for (int i = 0; i < NumMiscRegs; i++)
2010-11-15 21:04:03 +01:00
dest->setMiscRegNoEffect(i, src->readMiscRegNoEffect(i));
2009-11-18 01:02:09 +01:00
2010-11-15 21:04:03 +01:00
// setMiscReg "with effect" will set the misc register mapping correctly.
// e.g. updateRegMap(val)
dest->setMiscReg(MISCREG_CPSR, src->readMiscRegNoEffect(MISCREG_CPSR));
// Copy over the PC State
2010-11-15 21:04:03 +01:00
dest->pcState(src->pcState());
// Invalidate the tlb misc register cache
dest->getITBPtr()->invalidateMiscReg();
dest->getDTBPtr()->invalidateMiscReg();
2010-11-15 21:04:03 +01:00
}
bool
inSecureState(ThreadContext *tc)
{
SCR scr = inAArch64(tc) ? tc->readMiscReg(MISCREG_SCR_EL3) :
tc->readMiscReg(MISCREG_SCR);
return ArmSystem::haveSecurity(tc) && inSecureState(
scr, tc->readMiscReg(MISCREG_CPSR));
}
bool
inAArch64(ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
return opModeIs64((OperatingMode) (uint8_t) cpsr.mode);
}
bool
longDescFormatInUse(ThreadContext *tc)
{
TTBCR ttbcr = tc->readMiscReg(MISCREG_TTBCR);
return ArmSystem::haveLPAE(tc) && ttbcr.eae;
}
uint32_t
getMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
// Multiprocessor Affinity Register MPIDR from Cortex(tm)-A15 Technical
// Reference Manual
//
// bit 31 - Multi-processor extensions available
// bit 30 - Uni-processor system
// bit 24 - Multi-threaded cores
// bit 11-8 - Cluster ID
// bit 1-0 - CPU ID
//
// We deliberately extend both the Cluster ID and CPU ID fields to allow
// for simulation of larger systems
assert((0 <= tc->cpuId()) && (tc->cpuId() < 256));
assert((0 <= tc->socketId()) && (tc->socketId() < 65536));
if (arm_sys->multiProc) {
return 0x80000000 | // multiprocessor extensions available
tc->cpuId() | tc->socketId() << 8;
} else {
return 0x80000000 | // multiprocessor extensions available
0x40000000 | // in up system
tc->cpuId() | tc->socketId() << 8;
}
}
bool
ELIs64(ThreadContext *tc, ExceptionLevel el)
{
if (ArmSystem::highestEL(tc) == el)
// Register width is hard-wired
return ArmSystem::highestELIs64(tc);
switch (el) {
case EL0:
return opModeIs64(currOpMode(tc));
case EL1:
{
// @todo: uncomment this to enable Virtualization
// if (ArmSystem::haveVirtualization(tc)) {
// HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
// return hcr.rw;
// }
assert(ArmSystem::haveSecurity(tc));
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return scr.rw;
}
case EL2:
{
assert(ArmSystem::haveSecurity(tc));
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return scr.rw;
}
default:
panic("Invalid exception level");
break;
}
}
bool
isBigEndian64(ThreadContext *tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).ee;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).ee;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).ee;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).e0e;
default:
panic("Invalid exception level");
break;
}
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el,
TTBCR tcr)
{
switch (el) {
case EL0:
case EL1:
if (bits(addr, 55, 48) == 0xFF && tcr.tbi1)
return addr | mask(63, 55);
else if (!bits(addr, 55, 48) && tcr.tbi0)
return bits(addr,55, 0);
break;
// @todo: uncomment this to enable Virtualization
// case EL2:
// assert(ArmSystem::haveVirtualization());
// tcr = tc->readMiscReg(MISCREG_TCR_EL2);
// if (tcr.tbi)
// return addr & mask(56);
// break;
case EL3:
assert(ArmSystem::haveSecurity(tc));
if (tcr.tbi)
return addr & mask(56);
break;
default:
panic("Invalid exception level");
break;
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el)
{
TTBCR tcr;
switch (el) {
case EL0:
case EL1:
tcr = tc->readMiscReg(MISCREG_TCR_EL1);
if (bits(addr, 55, 48) == 0xFF && tcr.tbi1)
return addr | mask(63, 55);
else if (!bits(addr, 55, 48) && tcr.tbi0)
return bits(addr,55, 0);
break;
// @todo: uncomment this to enable Virtualization
// case EL2:
// assert(ArmSystem::haveVirtualization());
// tcr = tc->readMiscReg(MISCREG_TCR_EL2);
// if (tcr.tbi)
// return addr & mask(56);
// break;
case EL3:
assert(ArmSystem::haveSecurity(tc));
tcr = tc->readMiscReg(MISCREG_TCR_EL3);
if (tcr.tbi)
return addr & mask(56);
break;
default:
panic("Invalid exception level");
break;
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
truncPage(Addr addr)
{
return addr & ~(PageBytes - 1);
}
Addr
roundPage(Addr addr)
{
return (addr + PageBytes - 1) & ~(PageBytes - 1);
}
bool
mcrMrc15TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crn);
trapToHype |= hdcr.tpm && (crn == 9) && (crm >= 12);
trapToHype |= hcr.tidcp && (
((crn == 9) && ((crm <= 2) || ((crm >= 5) && (crm <= 8)))) ||
((crn == 10) && ((crm <= 1) || (crm == 4) || (crm == 8))) ||
((crn == 11) && ((crm <= 8) || (crm == 15))) );
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_CPACR:
trapToHype = hcptr.tcpac;
break;
case MISCREG_REVIDR:
case MISCREG_TCMTR:
case MISCREG_TLBTR:
case MISCREG_AIDR:
trapToHype = hcr.tid1;
break;
case MISCREG_CTR:
case MISCREG_CCSIDR:
case MISCREG_CLIDR:
case MISCREG_CSSELR:
trapToHype = hcr.tid2;
break;
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_AFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
trapToHype = hcr.tid3;
break;
case MISCREG_DCISW:
case MISCREG_DCCSW:
case MISCREG_DCCISW:
trapToHype = hcr.tsw;
break;
case MISCREG_DCIMVAC:
case MISCREG_DCCIMVAC:
case MISCREG_DCCMVAC:
trapToHype = hcr.tpc;
break;
case MISCREG_ICIMVAU:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DCCMVAU:
trapToHype = hcr.tpu;
break;
case MISCREG_TLBIALLIS:
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIASIDIS:
case MISCREG_TLBIMVAAIS:
case MISCREG_DTLBIALL:
case MISCREG_ITLBIALL:
case MISCREG_DTLBIMVA:
case MISCREG_ITLBIMVA:
case MISCREG_DTLBIASID:
case MISCREG_ITLBIASID:
case MISCREG_TLBIMVAA:
case MISCREG_TLBIALL:
case MISCREG_TLBIMVA:
case MISCREG_TLBIASID:
trapToHype = hcr.ttlb;
break;
case MISCREG_ACTLR:
trapToHype = hcr.tac;
break;
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
case MISCREG_PMCR:
trapToHype = hdcr.tpmcr;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrMrc14TrapToHyp(const MiscRegIndex miscReg, HCR hcr, CPSR cpsr, SCR scr,
HDCR hdcr, HSTR hstr, HCPTR hcptr, uint32_t iss)
{
bool isRead;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
inform("trap check M:%x N:%x 1:%x 2:%x hdcr %x, hcptr %x, hstr %x\n",
crm, crn, opc1, opc2, hdcr, hcptr, hstr);
trapToHype = hdcr.tda && (opc1 == 0);
trapToHype |= hcptr.tta && (opc1 == 1);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_DBGOSLSR:
case MISCREG_DBGOSLAR:
case MISCREG_DBGOSDLR:
case MISCREG_DBGPRCR:
trapToHype = hdcr.tdosa;
break;
case MISCREG_DBGDRAR:
case MISCREG_DBGDSAR:
trapToHype = hdcr.tdra;
break;
case MISCREG_JIDR:
trapToHype = hcr.tid0;
break;
case MISCREG_JOSCR:
case MISCREG_JMCR:
trapToHype = hstr.tjdbx;
break;
case MISCREG_TEECR:
case MISCREG_TEEHBR:
trapToHype = hstr.ttee;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
mcrrMrrc15TrapToHyp(const MiscRegIndex miscReg, CPSR cpsr, SCR scr, HSTR hstr,
HCR hcr, uint32_t iss)
{
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool isRead;
bool trapToHype = false;
if (!inSecureState(scr, cpsr) && (cpsr.mode != MODE_HYP)) {
// This is technically the wrong function, but we can re-use it for
// the moment because we only need one field, which overlaps with the
// mcrmrc layout
mcrMrcIssExtract(iss, isRead, crm, rt, crn, opc1, opc2);
trapToHype = ((uint32_t) hstr) & (1 << crm);
if (!trapToHype) {
switch (unflattenMiscReg(miscReg)) {
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trapToHype = hcr.tvm & !isRead;
break;
// No default action needed
default:
break;
}
}
}
return trapToHype;
}
bool
msrMrs64TrapToSup(const MiscRegIndex miscReg, ExceptionLevel el,
CPACR cpacr /* CPACR_EL1 */)
{
bool trapToSup = false;
switch (miscReg) {
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
if ((el == EL0 && cpacr.fpen != 0x3) ||
(el == EL1 && !(cpacr.fpen & 0x1)))
trapToSup = true;
break;
default:
break;
}
return trapToSup;
}
bool
msrMrs64TrapToHyp(const MiscRegIndex miscReg, bool isRead,
CPTR cptr /* CPTR_EL2 */,
HCR hcr /* HCR_EL2 */,
bool * isVfpNeon)
{
bool trapToHyp = false;
*isVfpNeon = false;
switch (miscReg) {
// FP/SIMD regs
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
trapToHyp = cptr.tfp;
*isVfpNeon = true;
break;
// CPACR
case MISCREG_CPACR_EL1:
trapToHyp = cptr.tcpac;
break;
// Virtual memory control regs
case MISCREG_SCTLR_EL1:
case MISCREG_TTBR0_EL1:
case MISCREG_TTBR1_EL1:
case MISCREG_TCR_EL1:
case MISCREG_ESR_EL1:
case MISCREG_FAR_EL1:
case MISCREG_AFSR0_EL1:
case MISCREG_AFSR1_EL1:
case MISCREG_MAIR_EL1:
case MISCREG_AMAIR_EL1:
case MISCREG_CONTEXTIDR_EL1:
trapToHyp = (hcr.trvm && isRead) || (hcr.tvm && !isRead);
break;
// TLB maintenance instructions
case MISCREG_TLBI_VMALLE1:
case MISCREG_TLBI_VAE1_Xt:
case MISCREG_TLBI_ASIDE1_Xt:
case MISCREG_TLBI_VAAE1_Xt:
case MISCREG_TLBI_VALE1_Xt:
case MISCREG_TLBI_VAALE1_Xt:
case MISCREG_TLBI_VMALLE1IS:
case MISCREG_TLBI_VAE1IS_Xt:
case MISCREG_TLBI_ASIDE1IS_Xt:
case MISCREG_TLBI_VAAE1IS_Xt:
case MISCREG_TLBI_VALE1IS_Xt:
case MISCREG_TLBI_VAALE1IS_Xt:
trapToHyp = hcr.ttlb;
break;
// Cache maintenance instructions to the point of unification
case MISCREG_IC_IVAU_Xt:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DC_CVAU_Xt:
trapToHyp = hcr.tpu;
break;
// Data/Unified cache maintenance instructions to the point of coherency
case MISCREG_DC_IVAC_Xt:
case MISCREG_DC_CIVAC_Xt:
case MISCREG_DC_CVAC_Xt:
trapToHyp = hcr.tpc;
break;
// Data/Unified cache maintenance instructions by set/way
case MISCREG_DC_ISW_Xt:
case MISCREG_DC_CSW_Xt:
case MISCREG_DC_CISW_Xt:
trapToHyp = hcr.tsw;
break;
// ACTLR
case MISCREG_ACTLR_EL1:
trapToHyp = hcr.tacr;
break;
// @todo: Trap implementation-dependent functionality based on
// hcr.tidcp
// ID regs, group 3
case MISCREG_ID_PFR0_EL1:
case MISCREG_ID_PFR1_EL1:
case MISCREG_ID_DFR0_EL1:
case MISCREG_ID_AFR0_EL1:
case MISCREG_ID_MMFR0_EL1:
case MISCREG_ID_MMFR1_EL1:
case MISCREG_ID_MMFR2_EL1:
case MISCREG_ID_MMFR3_EL1:
case MISCREG_ID_ISAR0_EL1:
case MISCREG_ID_ISAR1_EL1:
case MISCREG_ID_ISAR2_EL1:
case MISCREG_ID_ISAR3_EL1:
case MISCREG_ID_ISAR4_EL1:
case MISCREG_ID_ISAR5_EL1:
case MISCREG_MVFR0_EL1:
case MISCREG_MVFR1_EL1:
case MISCREG_MVFR2_EL1:
case MISCREG_ID_AA64PFR0_EL1:
case MISCREG_ID_AA64PFR1_EL1:
case MISCREG_ID_AA64DFR0_EL1:
case MISCREG_ID_AA64DFR1_EL1:
case MISCREG_ID_AA64ISAR0_EL1:
case MISCREG_ID_AA64ISAR1_EL1:
case MISCREG_ID_AA64MMFR0_EL1:
case MISCREG_ID_AA64MMFR1_EL1:
case MISCREG_ID_AA64AFR0_EL1:
case MISCREG_ID_AA64AFR1_EL1:
assert(isRead);
trapToHyp = hcr.tid3;
break;
// ID regs, group 2
case MISCREG_CTR_EL0:
case MISCREG_CCSIDR_EL1:
case MISCREG_CLIDR_EL1:
case MISCREG_CSSELR_EL1:
trapToHyp = hcr.tid2;
break;
// ID regs, group 1
case MISCREG_AIDR_EL1:
case MISCREG_REVIDR_EL1:
assert(isRead);
trapToHyp = hcr.tid1;
break;
default:
break;
}
return trapToHyp;
}
bool
msrMrs64TrapToMon(const MiscRegIndex miscReg, CPTR cptr /* CPTR_EL3 */,
ExceptionLevel el, bool * isVfpNeon)
{
bool trapToMon = false;
*isVfpNeon = false;
switch (miscReg) {
// FP/SIMD regs
case MISCREG_FPCR:
case MISCREG_FPSR:
case MISCREG_FPEXC32_EL2:
trapToMon = cptr.tfp;
*isVfpNeon = true;
break;
// CPACR, CPTR
case MISCREG_CPACR_EL1:
if (el == EL1) {
trapToMon = cptr.tcpac;
}
break;
case MISCREG_CPTR_EL2:
if (el == EL2) {
trapToMon = cptr.tcpac;
}
break;
default:
break;
}
return trapToMon;
}
bool
decodeMrsMsrBankedReg(uint8_t sysM, bool r, bool &isIntReg, int &regIdx,
CPSR cpsr, SCR scr, NSACR nsacr, bool checkSecurity)
{
OperatingMode mode = MODE_UNDEFINED;
bool ok = true;
// R mostly indicates if its a int register or a misc reg, we override
// below if the few corner cases
isIntReg = !r;
// Loosely based on ARM ARM issue C section B9.3.10
if (r) {
switch (sysM)
{
case 0xE:
regIdx = MISCREG_SPSR_FIQ;
mode = MODE_FIQ;
break;
case 0x10:
regIdx = MISCREG_SPSR_IRQ;
mode = MODE_IRQ;
break;
case 0x12:
regIdx = MISCREG_SPSR_SVC;
mode = MODE_SVC;
break;
case 0x14:
regIdx = MISCREG_SPSR_ABT;
mode = MODE_ABORT;
break;
case 0x16:
regIdx = MISCREG_SPSR_UND;
mode = MODE_UNDEFINED;
break;
case 0x1C:
regIdx = MISCREG_SPSR_MON;
mode = MODE_MON;
break;
case 0x1E:
regIdx = MISCREG_SPSR_HYP;
mode = MODE_HYP;
break;
default:
ok = false;
break;
}
} else {
int sysM4To3 = bits(sysM, 4, 3);
if (sysM4To3 == 0) {
mode = MODE_USER;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 1) {
mode = MODE_FIQ;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 3) {
if (bits(sysM, 1) == 0) {
mode = MODE_MON;
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
} else {
mode = MODE_HYP;
if (bits(sysM, 0) == 1) {
regIdx = intRegInMode(mode, 13); // R13 in HYP
} else {
isIntReg = false;
regIdx = MISCREG_ELR_HYP;
}
}
} else { // Other Banked registers
int sysM2 = bits(sysM, 2);
int sysM1 = bits(sysM, 1);
mode = (OperatingMode) ( ((sysM2 || sysM1) << 0) |
(1 << 1) |
((sysM2 && !sysM1) << 2) |
((sysM2 && sysM1) << 3) |
(1 << 4) );
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
// Don't flatten the register here. This is going to go through
// setIntReg() which will do the flattening
ok &= mode != cpsr.mode;
}
}
// Check that the requested register is accessable from the current mode
if (ok && checkSecurity && mode != cpsr.mode) {
switch (cpsr.mode)
{
case MODE_USER:
ok = false;
break;
case MODE_FIQ:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
break;
case MODE_HYP:
ok &= mode != MODE_MON;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
case MODE_IRQ:
case MODE_SVC:
case MODE_ABORT:
case MODE_UNDEFINED:
case MODE_SYSTEM:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
// can access everything, no further checks required
case MODE_MON:
break;
default:
panic("unknown Mode 0x%x\n", cpsr.mode);
break;
}
}
return (ok);
}
bool
vfpNeonEnabled(uint32_t &seq, HCPTR hcptr, NSACR nsacr, CPACR cpacr, CPSR cpsr,
uint32_t &iss, bool &trap, ThreadContext *tc, FPEXC fpexc,
bool isSIMD)
{
iss = 0;
trap = false;
bool undefined = false;
bool haveSecurity = ArmSystem::haveSecurity(tc);
bool haveVirtualization = ArmSystem::haveVirtualization(tc);
bool isSecure = inSecureState(tc);
// Non-secure view of CPACR and HCPTR determines behavior
// Copy register values
uint8_t cpacr_cp10 = cpacr.cp10;
bool cpacr_asedis = cpacr.asedis;
bool hcptr_cp10 = false;
bool hcptr_tase = false;
bool cp10_enabled = cpacr.cp10 == 0x3
|| (cpacr.cp10 == 0x1 && inPrivilegedMode(cpsr));
bool cp11_enabled = cpacr.cp11 == 0x3
|| (cpacr.cp11 == 0x1 && inPrivilegedMode(cpsr));
if (cp11_enabled) {
undefined |= !(fpexc.en && cp10_enabled);
} else {
undefined |= !(fpexc.en && cp10_enabled && (cpacr.cp11 == cpacr.cp10));
}
if (haveVirtualization) {
hcptr_cp10 = hcptr.tcp10;
undefined |= hcptr.tcp10 != hcptr.tcp11;
hcptr_tase = hcptr.tase;
}
if (haveSecurity) {
undefined |= nsacr.cp10 != nsacr.cp11;
if (!isSecure) {
// Modify register values to the Non-secure view
if (!nsacr.cp10) {
cpacr_cp10 = 0;
if (haveVirtualization) {
hcptr_cp10 = true;
}
}
if (nsacr.nsasedis) {
cpacr_asedis = true;
if (haveVirtualization) {
hcptr_tase = true;
}
}
}
}
// Check Coprocessor Access Control Register for permission to use CP10/11.
if (!haveVirtualization || (cpsr.mode != MODE_HYP)) {
switch (cpacr_cp10)
{
case 0:
undefined = true;
break;
case 1:
undefined |= inUserMode(cpsr);
break;
}
// Check if SIMD operations are disabled
if (isSIMD && cpacr_asedis) undefined = true;
}
// If required, check FPEXC enabled bit.
undefined |= !fpexc.en;
if (haveSecurity && haveVirtualization && !isSecure) {
if (hcptr_cp10 || (isSIMD && hcptr_tase)) {
iss = isSIMD ? (1 << 5) : 0xA;
trap = true;
}
}
return (!undefined);
}
bool
SPAlignmentCheckEnabled(ThreadContext* tc)
{
switch (opModeToEL(currOpMode(tc))) {
case EL3:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL3)).sa;
case EL2:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL2)).sa;
case EL1:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa;
case EL0:
return ((SCTLR) tc->readMiscReg(MISCREG_SCTLR_EL1)).sa0;
default:
panic("Invalid exception level");
break;
}
}
int
decodePhysAddrRange64(uint8_t pa_enc)
{
switch (pa_enc) {
case 0x0:
return 32;
case 0x1:
return 36;
case 0x2:
return 40;
case 0x3:
return 42;
case 0x4:
return 44;
case 0x5:
case 0x6:
case 0x7:
return 48;
default:
panic("Invalid phys. address range encoding");
}
}
uint8_t
encodePhysAddrRange64(int pa_size)
{
switch (pa_size) {
case 32:
return 0x0;
case 36:
return 0x1;
case 40:
return 0x2;
case 42:
return 0x3;
case 44:
return 0x4;
case 48:
return 0x5;
default:
panic("Invalid phys. address range");
}
}
} // namespace ArmISA