gem5/src/mem/ruby/system/System.cc

634 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright (c) 1999-2011 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <fcntl.h>
#include <zlib.h>
#include <cstdio>
#include "base/intmath.hh"
#include "base/statistics.hh"
#include "debug/RubyCacheTrace.hh"
#include "debug/RubySystem.hh"
#include "mem/ruby/common/Address.hh"
#include "mem/ruby/network/Network.hh"
2010-03-23 02:43:53 +01:00
#include "mem/ruby/profiler/Profiler.hh"
#include "mem/ruby/system/System.hh"
#include "sim/eventq.hh"
#include "sim/simulate.hh"
using namespace std;
int RubySystem::m_random_seed;
bool RubySystem::m_randomization;
int RubySystem::m_block_size_bytes;
int RubySystem::m_block_size_bits;
uint64 RubySystem::m_memory_size_bytes;
int RubySystem::m_memory_size_bits;
RubySystem::RubySystem(const Params *p)
: ClockedObject(p)
{
if (g_system_ptr != NULL)
fatal("Only one RubySystem object currently allowed.\n");
m_random_seed = p->random_seed;
srandom(m_random_seed);
m_randomization = p->randomization;
m_block_size_bytes = p->block_size_bytes;
assert(isPowerOf2(m_block_size_bytes));
m_block_size_bits = floorLog2(m_block_size_bytes);
m_memory_size_bytes = p->mem_size;
if (m_memory_size_bytes == 0) {
m_memory_size_bits = 0;
} else {
m_memory_size_bits = ceilLog2(m_memory_size_bytes);
}
if (p->no_mem_vec) {
m_mem_vec_ptr = NULL;
} else {
m_mem_vec_ptr = new MemoryVector;
m_mem_vec_ptr->resize(m_memory_size_bytes);
}
// Print ruby configuration and stats at exit and when asked for
Stats::registerDumpCallback(new RubyDumpStatsCallback(p->stats_filename,
this));
m_warmup_enabled = false;
m_cooldown_enabled = false;
// Setup the global variables used in Ruby
g_system_ptr = this;
// Resize to the size of different machine types
g_abs_controls.resize(MachineType_NUM);
}
2010-03-23 02:43:53 +01:00
void
RubySystem::init()
{
2010-03-23 02:43:53 +01:00
m_profiler_ptr->clearStats();
m_network_ptr->clearStats();
}
void
RubySystem::registerNetwork(Network* network_ptr)
{
m_network_ptr = network_ptr;
}
void
RubySystem::registerProfiler(Profiler* profiler_ptr)
{
m_profiler_ptr = profiler_ptr;
}
void
RubySystem::registerAbstractController(AbstractController* cntrl)
{
m_abs_cntrl_vec.push_back(cntrl);
MachineID id = cntrl->getMachineID();
g_abs_controls[id.getType()][id.getNum()] = cntrl;
}
void
RubySystem::registerSparseMemory(SparseMemory* s)
{
m_sparse_memory_vector.push_back(s);
}
void
RubySystem::registerMemController(MemoryControl *mc) {
m_memory_controller_vec.push_back(mc);
}
RubySystem::~RubySystem()
{
2010-03-23 02:43:53 +01:00
delete m_network_ptr;
delete m_profiler_ptr;
if (m_mem_vec_ptr)
delete m_mem_vec_ptr;
}
2010-03-23 02:43:53 +01:00
void
RubySystem::printStats(ostream& out)
{
2010-03-23 02:43:53 +01:00
const time_t T = time(NULL);
tm *localTime = localtime(&T);
char buf[100];
strftime(buf, 100, "%b/%d/%Y %H:%M:%S", localTime);
2010-03-23 02:43:53 +01:00
out << "Real time: " << buf << endl;
2010-03-23 02:43:53 +01:00
m_profiler_ptr->printStats(out);
m_network_ptr->printStats(out);
for (uint32_t i = 0;i < g_abs_controls.size(); ++i) {
for (map<uint32_t, AbstractController *>::iterator it =
g_abs_controls[i].begin();
it != g_abs_controls[i].end(); ++it) {
((*it).second)->printStats(out);
}
}
}
void
RubySystem::writeCompressedTrace(uint8_t *raw_data, string filename,
uint64 uncompressed_trace_size)
{
// Create the checkpoint file for the memory
string thefile = Checkpoint::dir() + "/" + filename.c_str();
int fd = creat(thefile.c_str(), 0664);
if (fd < 0) {
perror("creat");
fatal("Can't open memory trace file '%s'\n", filename);
}
gzFile compressedMemory = gzdopen(fd, "wb");
if (compressedMemory == NULL)
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
if (gzwrite(compressedMemory, raw_data, uncompressed_trace_size) !=
uncompressed_trace_size) {
fatal("Write failed on memory trace file '%s'\n", filename);
}
if (gzclose(compressedMemory)) {
fatal("Close failed on memory trace file '%s'\n", filename);
}
delete raw_data;
}
void
RubySystem::serialize(std::ostream &os)
{
m_cooldown_enabled = true;
vector<Sequencer*> sequencer_map;
Sequencer* sequencer_ptr = NULL;
int cntrl_id = -1;
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
if (sequencer_ptr == NULL) {
sequencer_ptr = sequencer_map[cntrl];
cntrl_id = cntrl;
}
}
assert(sequencer_ptr != NULL);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
if (sequencer_map[cntrl] == NULL) {
sequencer_map[cntrl] = sequencer_ptr;
}
}
DPRINTF(RubyCacheTrace, "Recording Cache Trace\n");
// Create the CacheRecorder and record the cache trace
m_cache_recorder = new CacheRecorder(NULL, 0, sequencer_map);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
m_abs_cntrl_vec[cntrl]->recordCacheTrace(cntrl, m_cache_recorder);
}
DPRINTF(RubyCacheTrace, "Cache Trace Complete\n");
// save the current tick value
Tick curtick_original = curTick();
// save the event queue head
Event* eventq_head = eventq->replaceHead(NULL);
DPRINTF(RubyCacheTrace, "Recording current tick %ld and event queue\n",
curtick_original);
// Schedule an event to start cache cooldown
DPRINTF(RubyCacheTrace, "Starting cache flush\n");
enqueueRubyEvent(curTick());
simulate();
DPRINTF(RubyCacheTrace, "Cache flush complete\n");
// Restore eventq head
eventq_head = eventq->replaceHead(eventq_head);
// Restore curTick
setCurTick(curtick_original);
uint8_t *raw_data = NULL;
if (m_mem_vec_ptr != NULL) {
uint64 memory_trace_size = m_mem_vec_ptr->collatePages(raw_data);
string memory_trace_file = name() + ".memory.gz";
writeCompressedTrace(raw_data, memory_trace_file,
memory_trace_size);
SERIALIZE_SCALAR(memory_trace_file);
SERIALIZE_SCALAR(memory_trace_size);
} else {
for (int i = 0; i < m_sparse_memory_vector.size(); ++i) {
m_sparse_memory_vector[i]->recordBlocks(cntrl_id,
m_cache_recorder);
}
}
// Aggergate the trace entries together into a single array
raw_data = new uint8_t[4096];
uint64 cache_trace_size = m_cache_recorder->aggregateRecords(&raw_data,
4096);
string cache_trace_file = name() + ".cache.gz";
writeCompressedTrace(raw_data, cache_trace_file, cache_trace_size);
SERIALIZE_SCALAR(cache_trace_file);
SERIALIZE_SCALAR(cache_trace_size);
m_cooldown_enabled = false;
}
void
RubySystem::readCompressedTrace(string filename, uint8_t *&raw_data,
uint64& uncompressed_trace_size)
{
// Read the trace file
gzFile compressedTrace;
// trace file
int fd = open(filename.c_str(), O_RDONLY);
if (fd < 0) {
perror("open");
fatal("Unable to open trace file %s", filename);
}
compressedTrace = gzdopen(fd, "rb");
if (compressedTrace == NULL) {
fatal("Insufficient memory to allocate compression state for %s\n",
filename);
}
raw_data = new uint8_t[uncompressed_trace_size];
if (gzread(compressedTrace, raw_data, uncompressed_trace_size) <
uncompressed_trace_size) {
fatal("Unable to read complete trace from file %s\n", filename);
}
if (gzclose(compressedTrace)) {
fatal("Failed to close cache trace file '%s'\n", filename);
}
}
void
RubySystem::unserialize(Checkpoint *cp, const string &section)
{
//
// The main purpose for clearing stats in the unserialize process is so
// that the profiler can correctly set its start time to the unserialized
// value of curTick()
//
resetStats();
uint8_t *uncompressed_trace = NULL;
if (m_mem_vec_ptr != NULL) {
string memory_trace_file;
uint64 memory_trace_size = 0;
UNSERIALIZE_SCALAR(memory_trace_file);
UNSERIALIZE_SCALAR(memory_trace_size);
memory_trace_file = cp->cptDir + "/" + memory_trace_file;
readCompressedTrace(memory_trace_file, uncompressed_trace,
memory_trace_size);
m_mem_vec_ptr->populatePages(uncompressed_trace);
delete uncompressed_trace;
uncompressed_trace = NULL;
}
string cache_trace_file;
uint64 cache_trace_size = 0;
UNSERIALIZE_SCALAR(cache_trace_file);
UNSERIALIZE_SCALAR(cache_trace_size);
cache_trace_file = cp->cptDir + "/" + cache_trace_file;
readCompressedTrace(cache_trace_file, uncompressed_trace,
cache_trace_size);
m_warmup_enabled = true;
vector<Sequencer*> sequencer_map;
Sequencer* t = NULL;
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
sequencer_map.push_back(m_abs_cntrl_vec[cntrl]->getSequencer());
if (t == NULL) t = sequencer_map[cntrl];
}
assert(t != NULL);
for (int cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
if (sequencer_map[cntrl] == NULL) {
sequencer_map[cntrl] = t;
}
}
m_cache_recorder = new CacheRecorder(uncompressed_trace, cache_trace_size,
sequencer_map);
}
2010-03-23 02:43:53 +01:00
void
RubySystem::startup()
{
if (m_warmup_enabled) {
// save the current tick value
Tick curtick_original = curTick();
// save the event queue head
Event* eventq_head = eventq->replaceHead(NULL);
// set curTick to 0 and reset Ruby System's clock
setCurTick(0);
resetClock();
// Schedule an event to start cache warmup
enqueueRubyEvent(curTick());
simulate();
delete m_cache_recorder;
m_cache_recorder = NULL;
m_warmup_enabled = false;
2012-07-11 18:44:34 +02:00
// reset DRAM so that it's not waiting for events on the old event
// queue
for (int i = 0; i < m_memory_controller_vec.size(); ++i) {
m_memory_controller_vec[i]->reset();
}
// Restore eventq head
eventq_head = eventq->replaceHead(eventq_head);
// Restore curTick and Ruby System's clock
setCurTick(curtick_original);
resetClock();
}
}
2010-03-23 02:43:53 +01:00
void
RubySystem::RubyEvent::process()
{
if (ruby_system->m_warmup_enabled) {
ruby_system->m_cache_recorder->enqueueNextFetchRequest();
} else if (ruby_system->m_cooldown_enabled) {
ruby_system->m_cache_recorder->enqueueNextFlushRequest();
}
}
void
RubySystem::resetStats()
{
m_profiler_ptr->clearStats();
m_network_ptr->clearStats();
for (uint32_t cntrl = 0; cntrl < m_abs_cntrl_vec.size(); cntrl++) {
m_abs_cntrl_vec[cntrl]->clearStats();
}
}
bool
RubySystem::functionalRead(PacketPtr pkt)
{
Address address(pkt->getAddr());
Address line_address(address);
line_address.makeLineAddress();
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = m_abs_cntrl_vec.size();
DPRINTF(RubySystem, "Functional Read request for %s\n",address);
unsigned int num_ro = 0;
unsigned int num_rw = 0;
unsigned int num_busy = 0;
unsigned int num_backing_store = 0;
unsigned int num_invalid = 0;
// In this loop we count the number of controllers that have the given
// address in read only, read write and busy states.
for (unsigned int i = 0; i < num_controllers; ++i) {
access_perm = m_abs_cntrl_vec[i]-> getAccessPermission(line_address);
if (access_perm == AccessPermission_Read_Only)
num_ro++;
else if (access_perm == AccessPermission_Read_Write)
num_rw++;
else if (access_perm == AccessPermission_Busy)
num_busy++;
else if (access_perm == AccessPermission_Backing_Store)
// See RubySlicc_Exports.sm for details, but Backing_Store is meant
// to represent blocks in memory *for Broadcast/Snooping protocols*,
// where memory has no idea whether it has an exclusive copy of data
// or not.
num_backing_store++;
else if (access_perm == AccessPermission_Invalid ||
access_perm == AccessPermission_NotPresent)
num_invalid++;
}
assert(num_rw <= 1);
uint8_t *data = pkt->getPtr<uint8_t>(true);
unsigned int size_in_bytes = pkt->getSize();
unsigned startByte = address.getAddress() - line_address.getAddress();
// This if case is meant to capture what happens in a Broadcast/Snoop
// protocol where the block does not exist in the cache hierarchy. You
// only want to read from the Backing_Store memory if there is no copy in
// the cache hierarchy, otherwise you want to try to read the RO or RW
// copies existing in the cache hierarchy (covered by the else statement).
// The reason is because the Backing_Store memory could easily be stale, if
// there are copies floating around the cache hierarchy, so you want to read
// it only if it's not in the cache hierarchy at all.
if (num_invalid == (num_controllers - 1) &&
num_backing_store == 1) {
DPRINTF(RubySystem, "only copy in Backing_Store memory, read from it\n");
for (unsigned int i = 0; i < num_controllers; ++i) {
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
if (access_perm == AccessPermission_Backing_Store) {
DataBlock& block = m_abs_cntrl_vec[i]->
getDataBlock(line_address);
DPRINTF(RubySystem, "reading from %s block %s\n",
m_abs_cntrl_vec[i]->name(), block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
data[i] = block.getByte(i + startByte);
}
return true;
}
}
} else if (num_ro > 0 || num_rw == 1) {
// In Broadcast/Snoop protocols, this covers if you know the block
// exists somewhere in the caching hierarchy, then you want to read any
// valid RO or RW block. In directory protocols, same thing, you want
// to read any valid readable copy of the block.
DPRINTF(RubySystem, "num_busy = %d, num_ro = %d, num_rw = %d\n",
num_busy, num_ro, num_rw);
// In this loop, we try to figure which controller has a read only or
// a read write copy of the given address. Any valid copy would suffice
// for a functional read.
for (unsigned int i = 0;i < num_controllers;++i) {
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_address);
if (access_perm == AccessPermission_Read_Only ||
access_perm == AccessPermission_Read_Write) {
DataBlock& block = m_abs_cntrl_vec[i]->
getDataBlock(line_address);
DPRINTF(RubySystem, "reading from %s block %s\n",
m_abs_cntrl_vec[i]->name(), block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
data[i] = block.getByte(i + startByte);
}
return true;
}
}
}
return false;
}
// The function searches through all the buffers that exist in different
// cache, directory and memory controllers, and in the network components
// and writes the data portion of those that hold the address specified
// in the packet.
bool
RubySystem::functionalWrite(PacketPtr pkt)
{
Address addr(pkt->getAddr());
Address line_addr = line_address(addr);
AccessPermission access_perm = AccessPermission_NotPresent;
int num_controllers = m_abs_cntrl_vec.size();
DPRINTF(RubySystem, "Functional Write request for %s\n",addr);
uint8_t *data = pkt->getPtr<uint8_t>(true);
unsigned int size_in_bytes = pkt->getSize();
unsigned startByte = addr.getAddress() - line_addr.getAddress();
for (unsigned int i = 0; i < num_controllers;++i) {
m_abs_cntrl_vec[i]->functionalWriteBuffers(pkt);
access_perm = m_abs_cntrl_vec[i]->getAccessPermission(line_addr);
if (access_perm != AccessPermission_Invalid &&
access_perm != AccessPermission_NotPresent) {
DataBlock& block = m_abs_cntrl_vec[i]->getDataBlock(line_addr);
DPRINTF(RubySystem, "%s\n",block);
for (unsigned i = 0; i < size_in_bytes; ++i) {
block.setByte(i + startByte, data[i]);
}
DPRINTF(RubySystem, "%s\n",block);
}
}
uint32_t M5_VAR_USED num_functional_writes = 0;
for (unsigned int i = 0; i < m_memory_controller_vec.size() ;++i) {
num_functional_writes +=
m_memory_controller_vec[i]->functionalWriteBuffers(pkt);
}
num_functional_writes += m_network_ptr->functionalWrite(pkt);
DPRINTF(RubySystem, "Messages written = %u\n", num_functional_writes);
return true;
}
#ifdef CHECK_COHERENCE
// This code will check for cases if the given cache block is exclusive in
// one node and shared in another-- a coherence violation
//
// To use, the SLICC specification must call sequencer.checkCoherence(address)
// when the controller changes to a state with new permissions. Do this
// in setState. The SLICC spec must also define methods "isBlockShared"
// and "isBlockExclusive" that are specific to that protocol
//
2010-03-23 02:43:53 +01:00
void
RubySystem::checkGlobalCoherenceInvariant(const Address& addr)
{
#if 0
NodeID exclusive = -1;
bool sharedDetected = false;
NodeID lastShared = -1;
for (int i = 0; i < m_chip_vector.size(); i++) {
if (m_chip_vector[i]->isBlockExclusive(addr)) {
if (exclusive != -1) {
// coherence violation
WARN_EXPR(exclusive);
WARN_EXPR(m_chip_vector[i]->getID());
WARN_EXPR(addr);
WARN_EXPR(getTime());
2010-03-23 02:43:53 +01:00
ERROR_MSG("Coherence Violation Detected -- 2 exclusive chips");
} else if (sharedDetected) {
WARN_EXPR(lastShared);
WARN_EXPR(m_chip_vector[i]->getID());
WARN_EXPR(addr);
WARN_EXPR(getTime());
2010-03-23 02:43:53 +01:00
ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
} else {
exclusive = m_chip_vector[i]->getID();
}
} else if (m_chip_vector[i]->isBlockShared(addr)) {
sharedDetected = true;
lastShared = m_chip_vector[i]->getID();
if (exclusive != -1) {
WARN_EXPR(lastShared);
WARN_EXPR(exclusive);
WARN_EXPR(addr);
WARN_EXPR(getTime());
2010-03-23 02:43:53 +01:00
ERROR_MSG("Coherence Violation Detected -- exclusive chip with >=1 shared");
}
}
}
2010-03-23 02:43:53 +01:00
#endif
}
#endif
RubySystem *
RubySystemParams::create()
{
return new RubySystem(this);
}
/**
* virtual process function that is invoked when the callback
* queue is executed.
*/
2010-03-23 02:43:53 +01:00
void
RubyDumpStatsCallback::process()
{
ruby_system->printStats(*os);
}