gem5/configs/example/garnet_synth_traffic.py

157 lines
5.8 KiB
Python
Raw Normal View History

# Copyright (c) 2016 Georgia Institute of Technology
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Author: Tushar Krishna
import m5
from m5.objects import *
from m5.defines import buildEnv
from m5.util import addToPath
import os, optparse, sys
addToPath('../')
from common import Options
from ruby import Ruby
# Get paths we might need. It's expected this file is in m5/configs/example.
config_path = os.path.dirname(os.path.abspath(__file__))
config_root = os.path.dirname(config_path)
m5_root = os.path.dirname(config_root)
parser = optparse.OptionParser()
Options.addNoISAOptions(parser)
parser.add_option("--synthetic", type="choice", default="uniform_random",
choices=['uniform_random', 'tornado', 'bit_complement', \
'bit_reverse', 'bit_rotation', 'neighbor', \
'shuffle', 'transpose'])
parser.add_option("-i", "--injectionrate", type="float", default=0.1,
metavar="I",
help="Injection rate in packets per cycle per node. \
Takes decimal value between 0 to 1 (eg. 0.225). \
Number of digits after 0 depends upon --precision.")
parser.add_option("--precision", type="int", default=3,
help="Number of digits of precision after decimal point\
for injection rate")
parser.add_option("--sim-cycles", type="int", default=1000,
help="Number of simulation cycles")
parser.add_option("--num-packets-max", type="int", default=-1,
help="Stop injecting after --num-packets-max.\
Set to -1 to disable.")
parser.add_option("--single-sender-id", type="int", default=-1,
help="Only inject from this sender.\
Set to -1 to disable.")
parser.add_option("--single-dest-id", type="int", default=-1,
help="Only send to this destination.\
Set to -1 to disable.")
parser.add_option("--inj-vnet", type="int", default=-1,
help="Only inject in this vnet (0, 1 or 2).\
0 and 1 are 1-flit, 2 is 5-flit.\
Set to -1 to inject randomly in all vnets.")
#
# Add the ruby specific and protocol specific options
#
Ruby.define_options(parser)
execfile(os.path.join(config_root, "common", "Options.py"))
(options, args) = parser.parse_args()
if args:
print "Error: script doesn't take any positional arguments"
sys.exit(1)
if options.inj_vnet > 2:
print "Error: Injection vnet %d should be 0 (1-flit), 1 (1-flit) \
or 2 (5-flit) or -1 (random)"\
% (options.inj_vnet)
sys.exit(1)
cpus = [ GarnetSyntheticTraffic(
num_packets_max=options.num_packets_max,
single_sender=options.single_sender_id,
single_dest=options.single_dest_id,
sim_cycles=options.sim_cycles,
traffic_type=options.synthetic,
inj_rate=options.injectionrate,
inj_vnet=options.inj_vnet,
precision=options.precision,
num_dest=options.num_dirs) \
for i in xrange(options.num_cpus) ]
# create the desired simulated system
system = System(cpu = cpus, mem_ranges = [AddrRange(options.mem_size)])
# Create a top-level voltage domain and clock domain
system.voltage_domain = VoltageDomain(voltage = options.sys_voltage)
system.clk_domain = SrcClockDomain(clock = options.sys_clock,
voltage_domain = system.voltage_domain)
Ruby.create_system(options, False, system)
sim: Add the notion of clock domains to all ClockedObjects This patch adds the notion of source- and derived-clock domains to the ClockedObjects. As such, all clock information is moved to the clock domain, and the ClockedObjects are grouped into domains. The clock domains are either source domains, with a specific clock period, or derived domains that have a parent domain and a divider (potentially chained). For piece of logic that runs at a derived clock (a ratio of the clock its parent is running at) the necessary derived clock domain is created from its corresponding parent clock domain. For now, the derived clock domain only supports a divider, thus ensuring a lower speed compared to its parent. Multiplier functionality implies a PLL logic that has not been modelled yet (create a separate clock instead). The clock domains should be used as a mechanism to provide a controllable clock source that affects clock for every clocked object lying beneath it. The clock of the domain can (in a future patch) be controlled by a handler responsible for dynamic frequency scaling of the respective clock domains. All the config scripts have been retro-fitted with clock domains. For the System a default SrcClockDomain is created. For CPUs that run at a different speed than the system, there is a seperate clock domain created. This domain incorporates the CPU and the associated caches. As before, Ruby runs under its own clock domain. The clock period of all domains are pre-computed, such that no virtual functions or multiplications are needed when calling clockPeriod. Instead, the clock period is pre-computed when any changes occur. For this to be possible, each clock domain tracks its children.
2013-06-27 11:49:49 +02:00
# Create a seperate clock domain for Ruby
system.ruby.clk_domain = SrcClockDomain(clock = options.ruby_clock,
voltage_domain = system.voltage_domain)
sim: Add the notion of clock domains to all ClockedObjects This patch adds the notion of source- and derived-clock domains to the ClockedObjects. As such, all clock information is moved to the clock domain, and the ClockedObjects are grouped into domains. The clock domains are either source domains, with a specific clock period, or derived domains that have a parent domain and a divider (potentially chained). For piece of logic that runs at a derived clock (a ratio of the clock its parent is running at) the necessary derived clock domain is created from its corresponding parent clock domain. For now, the derived clock domain only supports a divider, thus ensuring a lower speed compared to its parent. Multiplier functionality implies a PLL logic that has not been modelled yet (create a separate clock instead). The clock domains should be used as a mechanism to provide a controllable clock source that affects clock for every clocked object lying beneath it. The clock of the domain can (in a future patch) be controlled by a handler responsible for dynamic frequency scaling of the respective clock domains. All the config scripts have been retro-fitted with clock domains. For the System a default SrcClockDomain is created. For CPUs that run at a different speed than the system, there is a seperate clock domain created. This domain incorporates the CPU and the associated caches. As before, Ruby runs under its own clock domain. The clock period of all domains are pre-computed, such that no virtual functions or multiplications are needed when calling clockPeriod. Instead, the clock period is pre-computed when any changes occur. For this to be possible, each clock domain tracks its children.
2013-06-27 11:49:49 +02:00
i = 0
for ruby_port in system.ruby._cpu_ports:
#
# Tie the cpu test ports to the ruby cpu port
#
cpus[i].test = ruby_port.slave
i += 1
# -----------------------
# run simulation
# -----------------------
root = Root(full_system = False, system = system)
root.system.mem_mode = 'timing'
# Not much point in this being higher than the L1 latency
m5.ticks.setGlobalFrequency('1ns')
# instantiate configuration
m5.instantiate()
# simulate until program terminates
exit_event = m5.simulate(options.abs_max_tick)
print 'Exiting @ tick', m5.curTick(), 'because', exit_event.getCause()