gem5/src/arch/x86/isa/specialize.isa

164 lines
7.6 KiB
Text
Raw Normal View History

// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use. Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
// Director of Intellectual Property Licensing
// Office of Strategy and Technology
// Hewlett-Packard Company
// 1501 Page Mill Road
// Palo Alto, California 94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. No right of
// sublicense is granted herewith. Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses. Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
////////////////////////////////////////////////////////////////////
//
// Code to "specialize" a microcode sequence to use a particular
// variety of operands
//
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
def doSplitDecode(Name, builder, switchVal, vals, default = None):
blocks = OutputBlocks()
blocks.decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
new_blocks = builder(Name, *todo)
new_blocks.decode_block = \
'\tcase %s: %s\n' % (val, new_blocks.decode_block)
blocks.append(new_blocks)
if default:
new_blocks = builder(Name, *default)
new_blocks.decode_block = \
'\tdefault: %s\n' % new_blocks.decode_block
blocks.append(new_blocks)
blocks.decode_block += '}\n'
return blocks
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z][A-Z]*)(?P<size>[a-z][a-z]*)|(r(?P<reg>[A-Z0-9]*)(?P<rsize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
raise Exception, "Problem parsing operand type %s" % opTypeString
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
self.rsize = match.group("rsize")
ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes".
def specializeInst(Name, opTypes, env):
print "Specializing %s with opTypes %s" % (Name, opTypes)
while len(opTypes):
# Parse the operand type string we're working with
opType = OpType(opTypes[0])
if opType.reg:
#Figure out what to do with fixed register operands
#This is the index to use, so we should stick it some place.
if opType.reg in ("A", "B", "C", "D"):
env.addReg("INTREG_R%sX" % opType.reg)
else:
env.addReg("INTREG_R%s" % opType.reg)
if opType.size:
if opType.rsize in ("l", "h", "b"):
print "byte"
elif opType.rsize == "x":
print "word"
else:
print "Didn't recognize fixed register size %s!" % opType.rsize
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
env.addReg(ModRMRegIndex)
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regTypes = copy.copy(opTypes)
regTypes.pop(0)
regEnv = copy.copy(env)
regEnv.addReg(ModRMRMIndex)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
memTypes = copy.copy(opTypes)
memTypes.pop(0)
memEnv = copy.copy(env)
print "%0"
return doSplitDecode(Name, specializeInst, "MODRM_MOD",
{"3" : (regTypes, regEnv)}, (memTypes, memEnv))
elif opType.tag in ("I", "J"):
# Immediates
print "IMMEDIATE"
elif opType.tag == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
print "%0"
elif opType.tag in ("PR", "R", "VR"):
# There should probably be a check here to verify that mod
# is equal to 11b
env.addReg(ModRMRMIndex)
else:
raise Exception, "Unrecognized tag %s." % opType.tag
opTypes.pop(0)
# Generate code to return a macroop of the given name which will
# operate in the "emulation environment" env
return genMacroop(Name, env)
}};