487 lines
10 KiB
C
487 lines
10 KiB
C
#include "types.h"
|
|
#include "defs.h"
|
|
#include "param.h"
|
|
#include "mmu.h"
|
|
#include "x86.h"
|
|
#include "proc.h"
|
|
#include "spinlock.h"
|
|
|
|
struct spinlock proc_table_lock;
|
|
|
|
struct proc proc[NPROC];
|
|
static struct proc *initproc;
|
|
|
|
int nextpid = 1;
|
|
extern void forkret(void);
|
|
extern void forkret1(struct trapframe*);
|
|
|
|
void
|
|
pinit(void)
|
|
{
|
|
initlock(&proc_table_lock, "proc_table");
|
|
}
|
|
|
|
// Look in the process table for an UNUSED proc.
|
|
// If found, change state to EMBRYO and return it.
|
|
// Otherwise return 0.
|
|
static struct proc*
|
|
allocproc(void)
|
|
{
|
|
int i;
|
|
struct proc *p;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state == UNUSED){
|
|
p->state = EMBRYO;
|
|
p->pid = nextpid++;
|
|
release(&proc_table_lock);
|
|
return p;
|
|
}
|
|
}
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
|
|
// Grow current process's memory by n bytes.
|
|
// Return old size on success, -1 on failure.
|
|
int
|
|
growproc(int n)
|
|
{
|
|
char *newmem;
|
|
|
|
newmem = kalloc(cp->sz + n);
|
|
if(newmem == 0)
|
|
return -1;
|
|
memmove(newmem, cp->mem, cp->sz);
|
|
memset(newmem + cp->sz, 0, n);
|
|
kfree(cp->mem, cp->sz);
|
|
cp->mem = newmem;
|
|
cp->sz += n;
|
|
setupsegs(cp);
|
|
return cp->sz - n;
|
|
}
|
|
|
|
// Set up CPU's segment descriptors and task state for a given process.
|
|
// If p==0, set up for "idle" state for when scheduler() is running.
|
|
void
|
|
setupsegs(struct proc *p)
|
|
{
|
|
struct cpu *c;
|
|
|
|
pushcli();
|
|
c = &cpus[cpu()];
|
|
c->ts.ss0 = SEG_KDATA << 3;
|
|
if(p)
|
|
c->ts.esp0 = (uint)(p->kstack + KSTACKSIZE);
|
|
else
|
|
c->ts.esp0 = 0xffffffff;
|
|
|
|
c->gdt[0] = SEG_NULL;
|
|
c->gdt[SEG_KCODE] = SEG(STA_X|STA_R, 0, 0x100000 + 64*1024-1, 0);
|
|
c->gdt[SEG_KDATA] = SEG(STA_W, 0, 0xffffffff, 0);
|
|
c->gdt[SEG_TSS] = SEG16(STS_T32A, (uint)&c->ts, sizeof(c->ts)-1, 0);
|
|
c->gdt[SEG_TSS].s = 0;
|
|
if(p){
|
|
c->gdt[SEG_UCODE] = SEG(STA_X|STA_R, (uint)p->mem, p->sz-1, DPL_USER);
|
|
c->gdt[SEG_UDATA] = SEG(STA_W, (uint)p->mem, p->sz-1, DPL_USER);
|
|
} else {
|
|
c->gdt[SEG_UCODE] = SEG_NULL;
|
|
c->gdt[SEG_UDATA] = SEG_NULL;
|
|
}
|
|
|
|
lgdt(c->gdt, sizeof(c->gdt));
|
|
ltr(SEG_TSS << 3);
|
|
popcli();
|
|
}
|
|
|
|
// Create a new process copying p as the parent.
|
|
// Sets up stack to return as if from system call.
|
|
// Caller must set state of returned proc to RUNNABLE.
|
|
struct proc*
|
|
copyproc(struct proc *p)
|
|
{
|
|
int i;
|
|
struct proc *np;
|
|
|
|
// Allocate process.
|
|
if((np = allocproc()) == 0)
|
|
return 0;
|
|
|
|
// Allocate kernel stack.
|
|
if((np->kstack = kalloc(KSTACKSIZE)) == 0){
|
|
np->state = UNUSED;
|
|
return 0;
|
|
}
|
|
np->tf = (struct trapframe*)(np->kstack + KSTACKSIZE) - 1;
|
|
|
|
if(p){ // Copy process state from p.
|
|
np->parent = p;
|
|
memmove(np->tf, p->tf, sizeof(*np->tf));
|
|
|
|
np->sz = p->sz;
|
|
if((np->mem = kalloc(np->sz)) == 0){
|
|
kfree(np->kstack, KSTACKSIZE);
|
|
np->kstack = 0;
|
|
np->state = UNUSED;
|
|
np->parent = 0;
|
|
return 0;
|
|
}
|
|
memmove(np->mem, p->mem, np->sz);
|
|
|
|
for(i = 0; i < NOFILE; i++)
|
|
if(p->ofile[i])
|
|
np->ofile[i] = filedup(p->ofile[i]);
|
|
np->cwd = idup(p->cwd);
|
|
}
|
|
|
|
// Set up new context to start executing at forkret (see below).
|
|
np->context = (struct context *)np->tf - 1;
|
|
memset(np->context, 0, sizeof(*np->context));
|
|
np->context->eip = (uint)forkret;
|
|
|
|
// Clear %eax so that fork system call returns 0 in child.
|
|
np->tf->eax = 0;
|
|
return np;
|
|
}
|
|
|
|
// Set up first user process.
|
|
void
|
|
userinit(void)
|
|
{
|
|
struct proc *p;
|
|
extern uchar _binary_initcode_start[], _binary_initcode_size[];
|
|
|
|
p = copyproc(0);
|
|
p->sz = PAGE;
|
|
p->mem = kalloc(p->sz);
|
|
p->cwd = namei("/");
|
|
memset(p->tf, 0, sizeof(*p->tf));
|
|
p->tf->cs = (SEG_UCODE << 3) | DPL_USER;
|
|
p->tf->ds = (SEG_UDATA << 3) | DPL_USER;
|
|
p->tf->es = p->tf->ds;
|
|
p->tf->ss = p->tf->ds;
|
|
p->tf->eflags = FL_IF;
|
|
p->tf->esp = p->sz;
|
|
|
|
// Make return address readable; needed for some gcc.
|
|
p->tf->esp -= 4;
|
|
*(uint*)(p->mem + p->tf->esp) = 0xefefefef;
|
|
|
|
// On entry to user space, start executing at beginning of initcode.S.
|
|
p->tf->eip = 0;
|
|
memmove(p->mem, _binary_initcode_start, (int)_binary_initcode_size);
|
|
safestrcpy(p->name, "initcode", sizeof(p->name));
|
|
p->state = RUNNABLE;
|
|
|
|
initproc = p;
|
|
}
|
|
|
|
// Return currently running process.
|
|
struct proc*
|
|
curproc(void)
|
|
{
|
|
struct proc *p;
|
|
|
|
pushcli();
|
|
p = cpus[cpu()].curproc;
|
|
popcli();
|
|
return p;
|
|
}
|
|
|
|
//PAGEBREAK: 42
|
|
// Per-CPU process scheduler.
|
|
// Each CPU calls scheduler() after setting itself up.
|
|
// Scheduler never returns. It loops, doing:
|
|
// - choose a process to run
|
|
// - swtch to start running that process
|
|
// - eventually that process transfers control
|
|
// via swtch back to the scheduler.
|
|
void
|
|
scheduler(void)
|
|
{
|
|
struct proc *p;
|
|
struct cpu *c;
|
|
int i;
|
|
|
|
c = &cpus[cpu()];
|
|
for(;;){
|
|
// Enable interrupts on this processor, in lieu of saving intena.
|
|
sti();
|
|
|
|
// Loop over process table looking for process to run.
|
|
acquire(&proc_table_lock);
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state != RUNNABLE)
|
|
continue;
|
|
|
|
// Switch to chosen process. It is the process's job
|
|
// to release proc_table_lock and then reacquire it
|
|
// before jumping back to us.
|
|
c->curproc = p;
|
|
setupsegs(p);
|
|
p->state = RUNNING;
|
|
swtch(&c->context, &p->context);
|
|
|
|
// Process is done running for now.
|
|
// It should have changed its p->state before coming back.
|
|
c->curproc = 0;
|
|
setupsegs(0);
|
|
}
|
|
release(&proc_table_lock);
|
|
|
|
}
|
|
}
|
|
|
|
// Enter scheduler. Must already hold proc_table_lock
|
|
// and have changed curproc[cpu()]->state.
|
|
void
|
|
sched(void)
|
|
{
|
|
int intena;
|
|
|
|
if(readeflags()&FL_IF)
|
|
panic("sched interruptible");
|
|
if(cp->state == RUNNING)
|
|
panic("sched running");
|
|
if(!holding(&proc_table_lock))
|
|
panic("sched proc_table_lock");
|
|
if(cpus[cpu()].ncli != 1)
|
|
panic("sched locks");
|
|
|
|
intena = cpus[cpu()].intena;
|
|
swtch(&cp->context, &cpus[cpu()].context);
|
|
cpus[cpu()].intena = intena;
|
|
}
|
|
|
|
// Give up the CPU for one scheduling round.
|
|
void
|
|
yield(void)
|
|
{
|
|
acquire(&proc_table_lock);
|
|
cp->state = RUNNABLE;
|
|
sched();
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// A fork child's very first scheduling by scheduler()
|
|
// will swtch here. "Return" to user space.
|
|
void
|
|
forkret(void)
|
|
{
|
|
// Still holding proc_table_lock from scheduler.
|
|
release(&proc_table_lock);
|
|
|
|
// Jump into assembly, never to return.
|
|
forkret1(cp->tf);
|
|
}
|
|
|
|
// Atomically release lock and sleep on chan.
|
|
// Reacquires lock when reawakened.
|
|
void
|
|
sleep(void *chan, struct spinlock *lk)
|
|
{
|
|
if(cp == 0)
|
|
panic("sleep");
|
|
|
|
if(lk == 0)
|
|
panic("sleep without lk");
|
|
|
|
// Must acquire proc_table_lock in order to
|
|
// change p->state and then call sched.
|
|
// Once we hold proc_table_lock, we can be
|
|
// guaranteed that we won't miss any wakeup
|
|
// (wakeup runs with proc_table_lock locked),
|
|
// so it's okay to release lk.
|
|
if(lk != &proc_table_lock){
|
|
acquire(&proc_table_lock);
|
|
release(lk);
|
|
}
|
|
|
|
// Go to sleep.
|
|
cp->chan = chan;
|
|
cp->state = SLEEPING;
|
|
sched();
|
|
|
|
// Tidy up.
|
|
cp->chan = 0;
|
|
|
|
// Reacquire original lock.
|
|
if(lk != &proc_table_lock){
|
|
release(&proc_table_lock);
|
|
acquire(lk);
|
|
}
|
|
}
|
|
|
|
//PAGEBREAK!
|
|
// Wake up all processes sleeping on chan.
|
|
// Proc_table_lock must be held.
|
|
static void
|
|
wakeup1(void *chan)
|
|
{
|
|
struct proc *p;
|
|
|
|
for(p = proc; p < &proc[NPROC]; p++)
|
|
if(p->state == SLEEPING && p->chan == chan)
|
|
p->state = RUNNABLE;
|
|
}
|
|
|
|
// Wake up all processes sleeping on chan.
|
|
void
|
|
wakeup(void *chan)
|
|
{
|
|
acquire(&proc_table_lock);
|
|
wakeup1(chan);
|
|
release(&proc_table_lock);
|
|
}
|
|
|
|
// Kill the process with the given pid.
|
|
// Process won't actually exit until it returns
|
|
// to user space (see trap in trap.c).
|
|
int
|
|
kill(int pid)
|
|
{
|
|
struct proc *p;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(p = proc; p < &proc[NPROC]; p++){
|
|
if(p->pid == pid){
|
|
p->killed = 1;
|
|
// Wake process from sleep if necessary.
|
|
if(p->state == SLEEPING)
|
|
p->state = RUNNABLE;
|
|
release(&proc_table_lock);
|
|
return 0;
|
|
}
|
|
}
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
|
|
// Exit the current process. Does not return.
|
|
// Exited processes remain in the zombie state
|
|
// until their parent calls wait() to find out they exited.
|
|
void
|
|
exit(void)
|
|
{
|
|
struct proc *p;
|
|
int fd;
|
|
|
|
if(cp == initproc)
|
|
panic("init exiting");
|
|
|
|
// Close all open files.
|
|
for(fd = 0; fd < NOFILE; fd++){
|
|
if(cp->ofile[fd]){
|
|
fileclose(cp->ofile[fd]);
|
|
cp->ofile[fd] = 0;
|
|
}
|
|
}
|
|
|
|
iput(cp->cwd);
|
|
cp->cwd = 0;
|
|
|
|
acquire(&proc_table_lock);
|
|
|
|
// Parent might be sleeping in wait().
|
|
wakeup1(cp->parent);
|
|
|
|
// Pass abandoned children to init.
|
|
for(p = proc; p < &proc[NPROC]; p++){
|
|
if(p->parent == cp){
|
|
p->parent = initproc;
|
|
if(p->state == ZOMBIE)
|
|
wakeup1(initproc);
|
|
}
|
|
}
|
|
|
|
// Jump into the scheduler, never to return.
|
|
cp->killed = 0;
|
|
cp->state = ZOMBIE;
|
|
sched();
|
|
panic("zombie exit");
|
|
}
|
|
|
|
// Wait for a child process to exit and return its pid.
|
|
// Return -1 if this process has no children.
|
|
int
|
|
wait(void)
|
|
{
|
|
struct proc *p;
|
|
int i, havekids, pid;
|
|
|
|
acquire(&proc_table_lock);
|
|
for(;;){
|
|
// Scan through table looking for zombie children.
|
|
havekids = 0;
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state == UNUSED)
|
|
continue;
|
|
if(p->parent == cp){
|
|
if(p->state == ZOMBIE){
|
|
// Found one.
|
|
kfree(p->mem, p->sz);
|
|
kfree(p->kstack, KSTACKSIZE);
|
|
pid = p->pid;
|
|
p->state = UNUSED;
|
|
p->pid = 0;
|
|
p->parent = 0;
|
|
p->name[0] = 0;
|
|
release(&proc_table_lock);
|
|
return pid;
|
|
}
|
|
havekids = 1;
|
|
}
|
|
}
|
|
|
|
// No point waiting if we don't have any children.
|
|
if(!havekids || cp->killed){
|
|
release(&proc_table_lock);
|
|
return -1;
|
|
}
|
|
|
|
// Wait for children to exit. (See wakeup1 call in proc_exit.)
|
|
sleep(cp, &proc_table_lock);
|
|
}
|
|
}
|
|
|
|
// Print a process listing to console. For debugging.
|
|
// Runs when user types ^P on console.
|
|
// No lock to avoid wedging a stuck machine further.
|
|
void
|
|
procdump(void)
|
|
{
|
|
static char *states[] = {
|
|
[UNUSED] "unused",
|
|
[EMBRYO] "embryo",
|
|
[SLEEPING] "sleep ",
|
|
[RUNNABLE] "runble",
|
|
[RUNNING] "run ",
|
|
[ZOMBIE] "zombie"
|
|
};
|
|
int i, j;
|
|
struct proc *p;
|
|
char *state;
|
|
uint pc[10];
|
|
|
|
for(i = 0; i < NPROC; i++){
|
|
p = &proc[i];
|
|
if(p->state == UNUSED)
|
|
continue;
|
|
if(p->state >= 0 && p->state < NELEM(states) && states[p->state])
|
|
state = states[p->state];
|
|
else
|
|
state = "???";
|
|
cprintf("%d %s %s", p->pid, state, p->name);
|
|
if(p->state == SLEEPING){
|
|
getcallerpcs((uint*)p->context->ebp+2, pc);
|
|
for(j=0; j<10 && pc[j] != 0; j++)
|
|
cprintf(" %p", pc[j]);
|
|
}
|
|
cprintf("\n");
|
|
}
|
|
}
|
|
|