1057 lines
31 KiB
C
1057 lines
31 KiB
C
/* $NetBSD: prop_rb.c,v 1.9 2008/06/17 21:29:47 thorpej Exp $ */
|
||
|
||
/*-
|
||
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
||
* All rights reserved.
|
||
*
|
||
* This code is derived from software contributed to The NetBSD Foundation
|
||
* by Matt Thomas <matt@3am-software.com>.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in the
|
||
* documentation and/or other materials provided with the distribution.
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
||
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
||
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
* POSSIBILITY OF SUCH DAMAGE.
|
||
*/
|
||
|
||
#include <prop/proplib.h>
|
||
|
||
#include "prop_object_impl.h"
|
||
#include "prop_rb_impl.h"
|
||
|
||
#undef KASSERT
|
||
#ifdef RBDEBUG
|
||
#define KASSERT(x) _PROP_ASSERT(x)
|
||
#else
|
||
#define KASSERT(x) /* nothing */
|
||
#endif
|
||
|
||
#ifndef __predict_false
|
||
#define __predict_false(x) (x)
|
||
#endif
|
||
|
||
static void rb_tree_reparent_nodes(struct rb_tree *, struct rb_node *,
|
||
unsigned int);
|
||
static void rb_tree_insert_rebalance(struct rb_tree *, struct rb_node *);
|
||
static void rb_tree_removal_rebalance(struct rb_tree *, struct rb_node *,
|
||
unsigned int);
|
||
#ifdef RBDEBUG
|
||
static const struct rb_node *rb_tree_iterate_const(const struct rb_tree *,
|
||
const struct rb_node *, unsigned int);
|
||
static bool rb_tree_check_node(const struct rb_tree *, const struct rb_node *,
|
||
const struct rb_node *, bool);
|
||
#endif
|
||
|
||
#ifdef RBDEBUG
|
||
#define RBT_COUNT_INCR(rbt) (rbt)->rbt_count++
|
||
#define RBT_COUNT_DECR(rbt) (rbt)->rbt_count--
|
||
#else
|
||
#define RBT_COUNT_INCR(rbt) /* nothing */
|
||
#define RBT_COUNT_DECR(rbt) /* nothing */
|
||
#endif
|
||
|
||
#define RBUNCONST(a) ((void *)(unsigned long)(const void *)(a))
|
||
|
||
/*
|
||
* Rather than testing for the NULL everywhere, all terminal leaves are
|
||
* pointed to this node (and that includes itself). Note that by setting
|
||
* it to be const, that on some architectures trying to write to it will
|
||
* cause a fault.
|
||
*/
|
||
static const struct rb_node sentinel_node = {
|
||
.rb_nodes = { RBUNCONST(&sentinel_node),
|
||
RBUNCONST(&sentinel_node),
|
||
NULL },
|
||
.rb_u = { .u_s = { .s_sentinel = 1 } },
|
||
};
|
||
|
||
void
|
||
_prop_rb_tree_init(struct rb_tree *rbt, const struct rb_tree_ops *ops)
|
||
{
|
||
RB_TAILQ_INIT(&rbt->rbt_nodes);
|
||
#ifdef RBDEBUG
|
||
rbt->rbt_count = 0;
|
||
#endif
|
||
rbt->rbt_ops = ops;
|
||
*((const struct rb_node **)&rbt->rbt_root) = &sentinel_node;
|
||
}
|
||
|
||
/*
|
||
* Swap the location and colors of 'self' and its child @ which. The child
|
||
* can not be a sentinel node.
|
||
*/
|
||
/*ARGSUSED*/
|
||
static void
|
||
rb_tree_reparent_nodes(struct rb_tree *rbt _PROP_ARG_UNUSED,
|
||
struct rb_node *old_father, unsigned int which)
|
||
{
|
||
const unsigned int other = which ^ RB_NODE_OTHER;
|
||
struct rb_node * const grandpa = old_father->rb_parent;
|
||
struct rb_node * const old_child = old_father->rb_nodes[which];
|
||
struct rb_node * const new_father = old_child;
|
||
struct rb_node * const new_child = old_father;
|
||
unsigned int properties;
|
||
|
||
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
|
||
|
||
KASSERT(!RB_SENTINEL_P(old_child));
|
||
KASSERT(old_child->rb_parent == old_father);
|
||
|
||
KASSERT(rb_tree_check_node(rbt, old_father, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, old_child, NULL, false));
|
||
KASSERT(RB_ROOT_P(old_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
|
||
|
||
/*
|
||
* Exchange descendant linkages.
|
||
*/
|
||
grandpa->rb_nodes[old_father->rb_position] = new_father;
|
||
new_child->rb_nodes[which] = old_child->rb_nodes[other];
|
||
new_father->rb_nodes[other] = new_child;
|
||
|
||
/*
|
||
* Update ancestor linkages
|
||
*/
|
||
new_father->rb_parent = grandpa;
|
||
new_child->rb_parent = new_father;
|
||
|
||
/*
|
||
* Exchange properties between new_father and new_child. The only
|
||
* change is that new_child's position is now on the other side.
|
||
*/
|
||
properties = old_child->rb_properties;
|
||
new_father->rb_properties = old_father->rb_properties;
|
||
new_child->rb_properties = properties;
|
||
new_child->rb_position = other;
|
||
|
||
/*
|
||
* Make sure to reparent the new child to ourself.
|
||
*/
|
||
if (!RB_SENTINEL_P(new_child->rb_nodes[which])) {
|
||
new_child->rb_nodes[which]->rb_parent = new_child;
|
||
new_child->rb_nodes[which]->rb_position = which;
|
||
}
|
||
|
||
KASSERT(rb_tree_check_node(rbt, new_father, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, new_child, NULL, false));
|
||
KASSERT(RB_ROOT_P(new_father) || rb_tree_check_node(rbt, grandpa, NULL, false));
|
||
}
|
||
|
||
bool
|
||
_prop_rb_tree_insert_node(struct rb_tree *rbt, struct rb_node *self)
|
||
{
|
||
struct rb_node *parent, *tmp;
|
||
rb_compare_nodes_fn compare_nodes = rbt->rbt_ops->rbto_compare_nodes;
|
||
unsigned int position;
|
||
|
||
self->rb_properties = 0;
|
||
tmp = rbt->rbt_root;
|
||
/*
|
||
* This is a hack. Because rbt->rbt_root is just a struct rb_node *,
|
||
* just like rb_node->rb_nodes[RB_NODE_LEFT], we can use this fact to
|
||
* avoid a lot of tests for root and know that even at root,
|
||
* updating rb_node->rb_parent->rb_nodes[rb_node->rb_position] will
|
||
* rbt->rbt_root.
|
||
*/
|
||
/* LINTED: see above */
|
||
parent = (struct rb_node *)&rbt->rbt_root;
|
||
position = RB_NODE_LEFT;
|
||
|
||
/*
|
||
* Find out where to place this new leaf.
|
||
*/
|
||
while (!RB_SENTINEL_P(tmp)) {
|
||
const int diff = (*compare_nodes)(tmp, self);
|
||
if (__predict_false(diff == 0)) {
|
||
/*
|
||
* Node already exists; don't insert.
|
||
*/
|
||
return false;
|
||
}
|
||
parent = tmp;
|
||
KASSERT(diff != 0);
|
||
if (diff < 0) {
|
||
position = RB_NODE_LEFT;
|
||
} else {
|
||
position = RB_NODE_RIGHT;
|
||
}
|
||
tmp = parent->rb_nodes[position];
|
||
}
|
||
|
||
#ifdef RBDEBUG
|
||
{
|
||
struct rb_node *prev = NULL, *next = NULL;
|
||
|
||
if (position == RB_NODE_RIGHT)
|
||
prev = parent;
|
||
else if (tmp != rbt->rbt_root)
|
||
next = parent;
|
||
|
||
/*
|
||
* Verify our sequential position
|
||
*/
|
||
KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
|
||
KASSERT(next == NULL || !RB_SENTINEL_P(next));
|
||
if (prev != NULL && next == NULL)
|
||
next = TAILQ_NEXT(prev, rb_link);
|
||
if (prev == NULL && next != NULL)
|
||
prev = TAILQ_PREV(next, rb_node_qh, rb_link);
|
||
KASSERT(prev == NULL || !RB_SENTINEL_P(prev));
|
||
KASSERT(next == NULL || !RB_SENTINEL_P(next));
|
||
KASSERT(prev == NULL
|
||
|| (*compare_nodes)(prev, self) > 0);
|
||
KASSERT(next == NULL
|
||
|| (*compare_nodes)(self, next) > 0);
|
||
}
|
||
#endif
|
||
|
||
/*
|
||
* Initialize the node and insert as a leaf into the tree.
|
||
*/
|
||
self->rb_parent = parent;
|
||
self->rb_position = position;
|
||
/* LINTED: rbt_root hack */
|
||
if (__predict_false(parent == (struct rb_node *) &rbt->rbt_root)) {
|
||
RB_MARK_ROOT(self);
|
||
} else {
|
||
KASSERT(position == RB_NODE_LEFT || position == RB_NODE_RIGHT);
|
||
KASSERT(!RB_ROOT_P(self)); /* Already done */
|
||
}
|
||
KASSERT(RB_SENTINEL_P(parent->rb_nodes[position]));
|
||
self->rb_left = parent->rb_nodes[position];
|
||
self->rb_right = parent->rb_nodes[position];
|
||
parent->rb_nodes[position] = self;
|
||
KASSERT(self->rb_left == &sentinel_node &&
|
||
self->rb_right == &sentinel_node);
|
||
|
||
/*
|
||
* Insert the new node into a sorted list for easy sequential access
|
||
*/
|
||
RBT_COUNT_INCR(rbt);
|
||
#ifdef RBDEBUG
|
||
if (RB_ROOT_P(self)) {
|
||
RB_TAILQ_INSERT_HEAD(&rbt->rbt_nodes, self, rb_link);
|
||
} else if (position == RB_NODE_LEFT) {
|
||
KASSERT((*compare_nodes)(self, self->rb_parent) > 0);
|
||
RB_TAILQ_INSERT_BEFORE(self->rb_parent, self, rb_link);
|
||
} else {
|
||
KASSERT((*compare_nodes)(self->rb_parent, self) > 0);
|
||
RB_TAILQ_INSERT_AFTER(&rbt->rbt_nodes, self->rb_parent,
|
||
self, rb_link);
|
||
}
|
||
#endif
|
||
|
||
#if 0
|
||
/*
|
||
* Validate the tree before we rebalance
|
||
*/
|
||
_prop_rb_tree_check(rbt, false);
|
||
#endif
|
||
|
||
/*
|
||
* Rebalance tree after insertion
|
||
*/
|
||
rb_tree_insert_rebalance(rbt, self);
|
||
|
||
#if 0
|
||
/*
|
||
* Validate the tree after we rebalanced
|
||
*/
|
||
_prop_rb_tree_check(rbt, true);
|
||
#endif
|
||
|
||
return true;
|
||
}
|
||
|
||
static void
|
||
rb_tree_insert_rebalance(struct rb_tree *rbt, struct rb_node *self)
|
||
{
|
||
RB_MARK_RED(self);
|
||
|
||
while (!RB_ROOT_P(self) && RB_RED_P(self->rb_parent)) {
|
||
const unsigned int which =
|
||
(self->rb_parent == self->rb_parent->rb_parent->rb_left
|
||
? RB_NODE_LEFT
|
||
: RB_NODE_RIGHT);
|
||
const unsigned int other = which ^ RB_NODE_OTHER;
|
||
struct rb_node * father = self->rb_parent;
|
||
struct rb_node * grandpa = father->rb_parent;
|
||
struct rb_node * const uncle = grandpa->rb_nodes[other];
|
||
|
||
KASSERT(!RB_SENTINEL_P(self));
|
||
/*
|
||
* We are red and our parent is red, therefore we must have a
|
||
* grandfather and he must be black.
|
||
*/
|
||
KASSERT(RB_RED_P(self)
|
||
&& RB_RED_P(father)
|
||
&& RB_BLACK_P(grandpa));
|
||
|
||
if (RB_RED_P(uncle)) {
|
||
/*
|
||
* Case 1: our uncle is red
|
||
* Simply invert the colors of our parent and
|
||
* uncle and make our grandparent red. And
|
||
* then solve the problem up at his level.
|
||
*/
|
||
RB_MARK_BLACK(uncle);
|
||
RB_MARK_BLACK(father);
|
||
RB_MARK_RED(grandpa);
|
||
self = grandpa;
|
||
continue;
|
||
}
|
||
/*
|
||
* Case 2&3: our uncle is black.
|
||
*/
|
||
if (self == father->rb_nodes[other]) {
|
||
/*
|
||
* Case 2: we are on the same side as our uncle
|
||
* Swap ourselves with our parent so this case
|
||
* becomes case 3. Basically our parent becomes our
|
||
* child.
|
||
*/
|
||
rb_tree_reparent_nodes(rbt, father, other);
|
||
KASSERT(father->rb_parent == self);
|
||
KASSERT(self->rb_nodes[which] == father);
|
||
KASSERT(self->rb_parent == grandpa);
|
||
self = father;
|
||
father = self->rb_parent;
|
||
}
|
||
KASSERT(RB_RED_P(self) && RB_RED_P(father));
|
||
KASSERT(grandpa->rb_nodes[which] == father);
|
||
/*
|
||
* Case 3: we are opposite a child of a black uncle.
|
||
* Swap our parent and grandparent. Since our grandfather
|
||
* is black, our father will become black and our new sibling
|
||
* (former grandparent) will become red.
|
||
*/
|
||
rb_tree_reparent_nodes(rbt, grandpa, which);
|
||
KASSERT(self->rb_parent == father);
|
||
KASSERT(self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER] == grandpa);
|
||
KASSERT(RB_RED_P(self));
|
||
KASSERT(RB_BLACK_P(father));
|
||
KASSERT(RB_RED_P(grandpa));
|
||
break;
|
||
}
|
||
|
||
/*
|
||
* Final step: Set the root to black.
|
||
*/
|
||
RB_MARK_BLACK(rbt->rbt_root);
|
||
}
|
||
|
||
struct rb_node *
|
||
_prop_rb_tree_find(struct rb_tree *rbt, const void *key)
|
||
{
|
||
struct rb_node *parent = rbt->rbt_root;
|
||
rb_compare_key_fn compare_key = rbt->rbt_ops->rbto_compare_key;
|
||
|
||
while (!RB_SENTINEL_P(parent)) {
|
||
const int diff = (*compare_key)(parent, key);
|
||
if (diff == 0)
|
||
return parent;
|
||
parent = parent->rb_nodes[diff > 0];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void
|
||
rb_tree_prune_node(struct rb_tree *rbt, struct rb_node *self, int rebalance)
|
||
{
|
||
const unsigned int which = self->rb_position;
|
||
struct rb_node *father = self->rb_parent;
|
||
|
||
KASSERT(rebalance || (RB_ROOT_P(self) || RB_RED_P(self)));
|
||
KASSERT(!rebalance || RB_BLACK_P(self));
|
||
KASSERT(RB_CHILDLESS_P(self));
|
||
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
|
||
|
||
father->rb_nodes[which] = self->rb_left;
|
||
|
||
/*
|
||
* Remove ourselves from the node list and decrement the count.
|
||
*/
|
||
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
|
||
RBT_COUNT_DECR(rbt);
|
||
|
||
if (rebalance)
|
||
rb_tree_removal_rebalance(rbt, father, which);
|
||
KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, father, NULL, true));
|
||
}
|
||
|
||
static void
|
||
rb_tree_swap_prune_and_rebalance(struct rb_tree *rbt, struct rb_node *self,
|
||
struct rb_node *standin)
|
||
{
|
||
unsigned int standin_which = standin->rb_position;
|
||
unsigned int standin_other = standin_which ^ RB_NODE_OTHER;
|
||
struct rb_node *standin_child;
|
||
struct rb_node *standin_father;
|
||
bool rebalance = RB_BLACK_P(standin);
|
||
|
||
if (standin->rb_parent == self) {
|
||
/*
|
||
* As a child of self, any childen would be opposite of
|
||
* our parent (self).
|
||
*/
|
||
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
|
||
standin_child = standin->rb_nodes[standin_which];
|
||
} else {
|
||
/*
|
||
* Since we aren't a child of self, any childen would be
|
||
* on the same side as our parent (self).
|
||
*/
|
||
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_which]));
|
||
standin_child = standin->rb_nodes[standin_other];
|
||
}
|
||
|
||
/*
|
||
* the node we are removing must have two children.
|
||
*/
|
||
KASSERT(RB_TWOCHILDREN_P(self));
|
||
/*
|
||
* If standin has a child, it must be red.
|
||
*/
|
||
KASSERT(RB_SENTINEL_P(standin_child) || RB_RED_P(standin_child));
|
||
|
||
/*
|
||
* Verify things are sane.
|
||
*/
|
||
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
|
||
|
||
if (!RB_SENTINEL_P(standin_child)) {
|
||
/*
|
||
* We know we have a red child so if we swap them we can
|
||
* void flipping standin's child to black afterwards.
|
||
*/
|
||
KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
|
||
rb_tree_reparent_nodes(rbt, standin,
|
||
standin_child->rb_position);
|
||
KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
|
||
KASSERT(rb_tree_check_node(rbt, standin_child, NULL, true));
|
||
/*
|
||
* Since we are removing a red leaf, no need to rebalance.
|
||
*/
|
||
rebalance = false;
|
||
/*
|
||
* We know that standin can not be a child of self, so
|
||
* update before of that.
|
||
*/
|
||
KASSERT(standin->rb_parent != self);
|
||
standin_which = standin->rb_position;
|
||
standin_other = standin_which ^ RB_NODE_OTHER;
|
||
}
|
||
KASSERT(RB_CHILDLESS_P(standin));
|
||
|
||
/*
|
||
* If we are about to delete the standin's father, then when we call
|
||
* rebalance, we need to use ourselves as our father. Otherwise
|
||
* remember our original father. Also, if we are our standin's father
|
||
* we only need to reparent the standin's brother.
|
||
*/
|
||
if (standin->rb_parent == self) {
|
||
/*
|
||
* | R --> S |
|
||
* | Q S --> Q * |
|
||
* | --> |
|
||
*/
|
||
standin_father = standin;
|
||
KASSERT(RB_SENTINEL_P(standin->rb_nodes[standin_other]));
|
||
KASSERT(!RB_SENTINEL_P(self->rb_nodes[standin_other]));
|
||
KASSERT(self->rb_nodes[standin_which] == standin);
|
||
/*
|
||
* Make our brother our son.
|
||
*/
|
||
standin->rb_nodes[standin_other] = self->rb_nodes[standin_other];
|
||
standin->rb_nodes[standin_other]->rb_parent = standin;
|
||
KASSERT(standin->rb_nodes[standin_other]->rb_position == standin_other);
|
||
} else {
|
||
/*
|
||
* | P --> P |
|
||
* | S --> Q |
|
||
* | Q --> |
|
||
*/
|
||
standin_father = standin->rb_parent;
|
||
standin_father->rb_nodes[standin_which] =
|
||
standin->rb_nodes[standin_which];
|
||
standin->rb_left = self->rb_left;
|
||
standin->rb_right = self->rb_right;
|
||
standin->rb_left->rb_parent = standin;
|
||
standin->rb_right->rb_parent = standin;
|
||
}
|
||
|
||
/*
|
||
* Now copy the result of self to standin and then replace
|
||
* self with standin in the tree.
|
||
*/
|
||
standin->rb_parent = self->rb_parent;
|
||
standin->rb_properties = self->rb_properties;
|
||
standin->rb_parent->rb_nodes[standin->rb_position] = standin;
|
||
|
||
/*
|
||
* Remove ourselves from the node list and decrement the count.
|
||
*/
|
||
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
|
||
RBT_COUNT_DECR(rbt);
|
||
|
||
KASSERT(rb_tree_check_node(rbt, standin, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, standin_father, NULL, false));
|
||
|
||
if (!rebalance)
|
||
return;
|
||
|
||
rb_tree_removal_rebalance(rbt, standin_father, standin_which);
|
||
KASSERT(rb_tree_check_node(rbt, standin, NULL, true));
|
||
}
|
||
|
||
/*
|
||
* We could do this by doing
|
||
* rb_tree_node_swap(rbt, self, which);
|
||
* rb_tree_prune_node(rbt, self, false);
|
||
*
|
||
* But it's more efficient to just evalate and recolor the child.
|
||
*/
|
||
/*ARGSUSED*/
|
||
static void
|
||
rb_tree_prune_blackred_branch(struct rb_tree *rbt _PROP_ARG_UNUSED,
|
||
struct rb_node *self, unsigned int which)
|
||
{
|
||
struct rb_node *parent = self->rb_parent;
|
||
struct rb_node *child = self->rb_nodes[which];
|
||
|
||
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
|
||
KASSERT(RB_BLACK_P(self) && RB_RED_P(child));
|
||
KASSERT(!RB_TWOCHILDREN_P(child));
|
||
KASSERT(RB_CHILDLESS_P(child));
|
||
KASSERT(rb_tree_check_node(rbt, self, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, child, NULL, false));
|
||
|
||
/*
|
||
* Remove ourselves from the tree and give our former child our
|
||
* properties (position, color, root).
|
||
*/
|
||
parent->rb_nodes[self->rb_position] = child;
|
||
child->rb_parent = parent;
|
||
child->rb_properties = self->rb_properties;
|
||
|
||
/*
|
||
* Remove ourselves from the node list and decrement the count.
|
||
*/
|
||
RB_TAILQ_REMOVE(&rbt->rbt_nodes, self, rb_link);
|
||
RBT_COUNT_DECR(rbt);
|
||
|
||
KASSERT(RB_ROOT_P(self) || rb_tree_check_node(rbt, parent, NULL, true));
|
||
KASSERT(rb_tree_check_node(rbt, child, NULL, true));
|
||
}
|
||
/*
|
||
*
|
||
*/
|
||
void
|
||
_prop_rb_tree_remove_node(struct rb_tree *rbt, struct rb_node *self)
|
||
{
|
||
struct rb_node *standin;
|
||
unsigned int which;
|
||
/*
|
||
* In the following diagrams, we (the node to be removed) are S. Red
|
||
* nodes are lowercase. T could be either red or black.
|
||
*
|
||
* Remember the major axiom of the red-black tree: the number of
|
||
* black nodes from the root to each leaf is constant across all
|
||
* leaves, only the number of red nodes varies.
|
||
*
|
||
* Thus removing a red leaf doesn't require any other changes to a
|
||
* red-black tree. So if we must remove a node, attempt to rearrange
|
||
* the tree so we can remove a red node.
|
||
*
|
||
* The simpliest case is a childless red node or a childless root node:
|
||
*
|
||
* | T --> T | or | R --> * |
|
||
* | s --> * |
|
||
*/
|
||
if (RB_CHILDLESS_P(self)) {
|
||
if (RB_RED_P(self) || RB_ROOT_P(self)) {
|
||
rb_tree_prune_node(rbt, self, false);
|
||
return;
|
||
}
|
||
rb_tree_prune_node(rbt, self, true);
|
||
return;
|
||
}
|
||
KASSERT(!RB_CHILDLESS_P(self));
|
||
if (!RB_TWOCHILDREN_P(self)) {
|
||
/*
|
||
* The next simpliest case is the node we are deleting is
|
||
* black and has one red child.
|
||
*
|
||
* | T --> T --> T |
|
||
* | S --> R --> R |
|
||
* | r --> s --> * |
|
||
*/
|
||
which = RB_LEFT_SENTINEL_P(self) ? RB_NODE_RIGHT : RB_NODE_LEFT;
|
||
KASSERT(RB_BLACK_P(self));
|
||
KASSERT(RB_RED_P(self->rb_nodes[which]));
|
||
KASSERT(RB_CHILDLESS_P(self->rb_nodes[which]));
|
||
rb_tree_prune_blackred_branch(rbt, self, which);
|
||
return;
|
||
}
|
||
KASSERT(RB_TWOCHILDREN_P(self));
|
||
|
||
/*
|
||
* We invert these because we prefer to remove from the inside of
|
||
* the tree.
|
||
*/
|
||
which = self->rb_position ^ RB_NODE_OTHER;
|
||
|
||
/*
|
||
* Let's find the node closes to us opposite of our parent
|
||
* Now swap it with ourself, "prune" it, and rebalance, if needed.
|
||
*/
|
||
standin = _prop_rb_tree_iterate(rbt, self, which);
|
||
rb_tree_swap_prune_and_rebalance(rbt, self, standin);
|
||
}
|
||
|
||
static void
|
||
rb_tree_removal_rebalance(struct rb_tree *rbt, struct rb_node *parent,
|
||
unsigned int which)
|
||
{
|
||
KASSERT(!RB_SENTINEL_P(parent));
|
||
KASSERT(RB_SENTINEL_P(parent->rb_nodes[which]));
|
||
KASSERT(which == RB_NODE_LEFT || which == RB_NODE_RIGHT);
|
||
|
||
while (RB_BLACK_P(parent->rb_nodes[which])) {
|
||
unsigned int other = which ^ RB_NODE_OTHER;
|
||
struct rb_node *brother = parent->rb_nodes[other];
|
||
|
||
KASSERT(!RB_SENTINEL_P(brother));
|
||
/*
|
||
* For cases 1, 2a, and 2b, our brother's children must
|
||
* be black and our father must be black
|
||
*/
|
||
if (RB_BLACK_P(parent)
|
||
&& RB_BLACK_P(brother->rb_left)
|
||
&& RB_BLACK_P(brother->rb_right)) {
|
||
/*
|
||
* Case 1: Our brother is red, swap its position
|
||
* (and colors) with our parent. This is now case 2b.
|
||
*
|
||
* B -> D
|
||
* x d -> b E
|
||
* C E -> x C
|
||
*/
|
||
if (RB_RED_P(brother)) {
|
||
KASSERT(RB_BLACK_P(parent));
|
||
rb_tree_reparent_nodes(rbt, parent, other);
|
||
brother = parent->rb_nodes[other];
|
||
KASSERT(!RB_SENTINEL_P(brother));
|
||
KASSERT(RB_BLACK_P(brother));
|
||
KASSERT(RB_RED_P(parent));
|
||
KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
|
||
} else {
|
||
/*
|
||
* Both our parent and brother are black.
|
||
* Change our brother to red, advance up rank
|
||
* and go through the loop again.
|
||
*
|
||
* B -> B
|
||
* A D -> A d
|
||
* C E -> C E
|
||
*/
|
||
RB_MARK_RED(brother);
|
||
KASSERT(RB_BLACK_P(brother->rb_left));
|
||
KASSERT(RB_BLACK_P(brother->rb_right));
|
||
if (RB_ROOT_P(parent))
|
||
return;
|
||
KASSERT(rb_tree_check_node(rbt, brother, NULL, false));
|
||
KASSERT(rb_tree_check_node(rbt, parent, NULL, false));
|
||
which = parent->rb_position;
|
||
parent = parent->rb_parent;
|
||
}
|
||
} else if (RB_RED_P(parent)
|
||
&& RB_BLACK_P(brother)
|
||
&& RB_BLACK_P(brother->rb_left)
|
||
&& RB_BLACK_P(brother->rb_right)) {
|
||
KASSERT(RB_BLACK_P(brother));
|
||
KASSERT(RB_BLACK_P(brother->rb_left));
|
||
KASSERT(RB_BLACK_P(brother->rb_right));
|
||
RB_MARK_BLACK(parent);
|
||
RB_MARK_RED(brother);
|
||
KASSERT(rb_tree_check_node(rbt, brother, NULL, true));
|
||
break; /* We're done! */
|
||
} else {
|
||
KASSERT(RB_BLACK_P(brother));
|
||
KASSERT(!RB_CHILDLESS_P(brother));
|
||
/*
|
||
* Case 3: our brother is black, our left nephew is
|
||
* red, and our right nephew is black. Swap our
|
||
* brother with our left nephew. This result in a
|
||
* tree that matches case 4.
|
||
*
|
||
* B -> D
|
||
* A D -> B E
|
||
* c e -> A C
|
||
*/
|
||
if (RB_BLACK_P(brother->rb_nodes[other])) {
|
||
KASSERT(RB_RED_P(brother->rb_nodes[which]));
|
||
rb_tree_reparent_nodes(rbt, brother, which);
|
||
KASSERT(brother->rb_parent == parent->rb_nodes[other]);
|
||
brother = parent->rb_nodes[other];
|
||
KASSERT(RB_RED_P(brother->rb_nodes[other]));
|
||
}
|
||
/*
|
||
* Case 4: our brother is black and our right nephew
|
||
* is red. Swap our parent and brother locations and
|
||
* change our right nephew to black. (these can be
|
||
* done in either order so we change the color first).
|
||
* The result is a valid red-black tree and is a
|
||
* terminal case.
|
||
*
|
||
* B -> D
|
||
* A D -> B E
|
||
* c e -> A C
|
||
*/
|
||
RB_MARK_BLACK(brother->rb_nodes[other]);
|
||
rb_tree_reparent_nodes(rbt, parent, other);
|
||
break; /* We're done! */
|
||
}
|
||
}
|
||
KASSERT(rb_tree_check_node(rbt, parent, NULL, true));
|
||
}
|
||
|
||
struct rb_node *
|
||
_prop_rb_tree_iterate(struct rb_tree *rbt, struct rb_node *self,
|
||
unsigned int direction)
|
||
{
|
||
const unsigned int other = direction ^ RB_NODE_OTHER;
|
||
KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
|
||
|
||
if (self == NULL) {
|
||
self = rbt->rbt_root;
|
||
if (RB_SENTINEL_P(self))
|
||
return NULL;
|
||
while (!RB_SENTINEL_P(self->rb_nodes[other]))
|
||
self = self->rb_nodes[other];
|
||
return self;
|
||
}
|
||
KASSERT(!RB_SENTINEL_P(self));
|
||
/*
|
||
* We can't go any further in this direction. We proceed up in the
|
||
* opposite direction until our parent is in direction we want to go.
|
||
*/
|
||
if (RB_SENTINEL_P(self->rb_nodes[direction])) {
|
||
while (!RB_ROOT_P(self)) {
|
||
if (other == self->rb_position)
|
||
return self->rb_parent;
|
||
self = self->rb_parent;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* Advance down one in current direction and go down as far as possible
|
||
* in the opposite direction.
|
||
*/
|
||
self = self->rb_nodes[direction];
|
||
KASSERT(!RB_SENTINEL_P(self));
|
||
while (!RB_SENTINEL_P(self->rb_nodes[other]))
|
||
self = self->rb_nodes[other];
|
||
return self;
|
||
}
|
||
|
||
#ifdef RBDEBUG
|
||
static const struct rb_node *
|
||
rb_tree_iterate_const(const struct rb_tree *rbt, const struct rb_node *self,
|
||
unsigned int direction)
|
||
{
|
||
const unsigned int other = direction ^ RB_NODE_OTHER;
|
||
KASSERT(direction == RB_NODE_LEFT || direction == RB_NODE_RIGHT);
|
||
|
||
if (self == NULL) {
|
||
self = rbt->rbt_root;
|
||
if (RB_SENTINEL_P(self))
|
||
return NULL;
|
||
while (!RB_SENTINEL_P(self->rb_nodes[other]))
|
||
self = self->rb_nodes[other];
|
||
return self;
|
||
}
|
||
KASSERT(!RB_SENTINEL_P(self));
|
||
/*
|
||
* We can't go any further in this direction. We proceed up in the
|
||
* opposite direction until our parent is in direction we want to go.
|
||
*/
|
||
if (RB_SENTINEL_P(self->rb_nodes[direction])) {
|
||
while (!RB_ROOT_P(self)) {
|
||
if (other == self->rb_position)
|
||
return self->rb_parent;
|
||
self = self->rb_parent;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/*
|
||
* Advance down one in current direction and go down as far as possible
|
||
* in the opposite direction.
|
||
*/
|
||
self = self->rb_nodes[direction];
|
||
KASSERT(!RB_SENTINEL_P(self));
|
||
while (!RB_SENTINEL_P(self->rb_nodes[other]))
|
||
self = self->rb_nodes[other];
|
||
return self;
|
||
}
|
||
|
||
static bool
|
||
rb_tree_check_node(const struct rb_tree *rbt, const struct rb_node *self,
|
||
const struct rb_node *prev, bool red_check)
|
||
{
|
||
KASSERT(!self->rb_sentinel);
|
||
KASSERT(self->rb_left);
|
||
KASSERT(self->rb_right);
|
||
KASSERT(prev == NULL ||
|
||
(*rbt->rbt_ops->rbto_compare_nodes)(prev, self) > 0);
|
||
|
||
/*
|
||
* Verify our relationship to our parent.
|
||
*/
|
||
if (RB_ROOT_P(self)) {
|
||
KASSERT(self == rbt->rbt_root);
|
||
KASSERT(self->rb_position == RB_NODE_LEFT);
|
||
KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
|
||
KASSERT(self->rb_parent == (const struct rb_node *) &rbt->rbt_root);
|
||
} else {
|
||
KASSERT(self != rbt->rbt_root);
|
||
KASSERT(!RB_PARENT_SENTINEL_P(self));
|
||
if (self->rb_position == RB_NODE_LEFT) {
|
||
KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) > 0);
|
||
KASSERT(self->rb_parent->rb_nodes[RB_NODE_LEFT] == self);
|
||
} else {
|
||
KASSERT((*rbt->rbt_ops->rbto_compare_nodes)(self, self->rb_parent) < 0);
|
||
KASSERT(self->rb_parent->rb_nodes[RB_NODE_RIGHT] == self);
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Verify our position in the linked list against the tree itself.
|
||
*/
|
||
{
|
||
const struct rb_node *prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
|
||
const struct rb_node *next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
|
||
KASSERT(prev0 == TAILQ_PREV(self, rb_node_qh, rb_link));
|
||
if (next0 != TAILQ_NEXT(self, rb_link))
|
||
next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
|
||
KASSERT(next0 == TAILQ_NEXT(self, rb_link));
|
||
}
|
||
|
||
/*
|
||
* The root must be black.
|
||
* There can never be two adjacent red nodes.
|
||
*/
|
||
if (red_check) {
|
||
KASSERT(!RB_ROOT_P(self) || RB_BLACK_P(self));
|
||
if (RB_RED_P(self)) {
|
||
const struct rb_node *brother;
|
||
KASSERT(!RB_ROOT_P(self));
|
||
brother = self->rb_parent->rb_nodes[self->rb_position ^ RB_NODE_OTHER];
|
||
KASSERT(RB_BLACK_P(self->rb_parent));
|
||
/*
|
||
* I'm red and have no children, then I must either
|
||
* have no brother or my brother also be red and
|
||
* also have no children. (black count == 0)
|
||
*/
|
||
KASSERT(!RB_CHILDLESS_P(self)
|
||
|| RB_SENTINEL_P(brother)
|
||
|| RB_RED_P(brother)
|
||
|| RB_CHILDLESS_P(brother));
|
||
/*
|
||
* If I'm not childless, I must have two children
|
||
* and they must be both be black.
|
||
*/
|
||
KASSERT(RB_CHILDLESS_P(self)
|
||
|| (RB_TWOCHILDREN_P(self)
|
||
&& RB_BLACK_P(self->rb_left)
|
||
&& RB_BLACK_P(self->rb_right)));
|
||
/*
|
||
* If I'm not childless, thus I have black children,
|
||
* then my brother must either be black or have two
|
||
* black children.
|
||
*/
|
||
KASSERT(RB_CHILDLESS_P(self)
|
||
|| RB_BLACK_P(brother)
|
||
|| (RB_TWOCHILDREN_P(brother)
|
||
&& RB_BLACK_P(brother->rb_left)
|
||
&& RB_BLACK_P(brother->rb_right)));
|
||
} else {
|
||
/*
|
||
* If I'm black and have one child, that child must
|
||
* be red and childless.
|
||
*/
|
||
KASSERT(RB_CHILDLESS_P(self)
|
||
|| RB_TWOCHILDREN_P(self)
|
||
|| (!RB_LEFT_SENTINEL_P(self)
|
||
&& RB_RIGHT_SENTINEL_P(self)
|
||
&& RB_RED_P(self->rb_left)
|
||
&& RB_CHILDLESS_P(self->rb_left))
|
||
|| (!RB_RIGHT_SENTINEL_P(self)
|
||
&& RB_LEFT_SENTINEL_P(self)
|
||
&& RB_RED_P(self->rb_right)
|
||
&& RB_CHILDLESS_P(self->rb_right)));
|
||
|
||
/*
|
||
* If I'm a childless black node and my parent is
|
||
* black, my 2nd closet relative away from my parent
|
||
* is either red or has a red parent or red children.
|
||
*/
|
||
if (!RB_ROOT_P(self)
|
||
&& RB_CHILDLESS_P(self)
|
||
&& RB_BLACK_P(self->rb_parent)) {
|
||
const unsigned int which = self->rb_position;
|
||
const unsigned int other = which ^ RB_NODE_OTHER;
|
||
const struct rb_node *relative0, *relative;
|
||
|
||
relative0 = rb_tree_iterate_const(rbt,
|
||
self, other);
|
||
KASSERT(relative0 != NULL);
|
||
relative = rb_tree_iterate_const(rbt,
|
||
relative0, other);
|
||
KASSERT(relative != NULL);
|
||
KASSERT(RB_SENTINEL_P(relative->rb_nodes[which]));
|
||
#if 0
|
||
KASSERT(RB_RED_P(relative)
|
||
|| RB_RED_P(relative->rb_left)
|
||
|| RB_RED_P(relative->rb_right)
|
||
|| RB_RED_P(relative->rb_parent));
|
||
#endif
|
||
}
|
||
}
|
||
/*
|
||
* A grandparent's children must be real nodes and not
|
||
* sentinels. First check out grandparent.
|
||
*/
|
||
KASSERT(RB_ROOT_P(self)
|
||
|| RB_ROOT_P(self->rb_parent)
|
||
|| RB_TWOCHILDREN_P(self->rb_parent->rb_parent));
|
||
/*
|
||
* If we are have grandchildren on our left, then
|
||
* we must have a child on our right.
|
||
*/
|
||
KASSERT(RB_LEFT_SENTINEL_P(self)
|
||
|| RB_CHILDLESS_P(self->rb_left)
|
||
|| !RB_RIGHT_SENTINEL_P(self));
|
||
/*
|
||
* If we are have grandchildren on our right, then
|
||
* we must have a child on our left.
|
||
*/
|
||
KASSERT(RB_RIGHT_SENTINEL_P(self)
|
||
|| RB_CHILDLESS_P(self->rb_right)
|
||
|| !RB_LEFT_SENTINEL_P(self));
|
||
|
||
/*
|
||
* If we have a child on the left and it doesn't have two
|
||
* children make sure we don't have great-great-grandchildren on
|
||
* the right.
|
||
*/
|
||
KASSERT(RB_TWOCHILDREN_P(self->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_left->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_right->rb_right->rb_right));
|
||
|
||
/*
|
||
* If we have a child on the right and it doesn't have two
|
||
* children make sure we don't have great-great-grandchildren on
|
||
* the left.
|
||
*/
|
||
KASSERT(RB_TWOCHILDREN_P(self->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_left->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_right)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_left)
|
||
|| RB_CHILDLESS_P(self->rb_left->rb_right->rb_right));
|
||
|
||
/*
|
||
* If we are fully interior node, then our predecessors and
|
||
* successors must have no children in our direction.
|
||
*/
|
||
if (RB_TWOCHILDREN_P(self)) {
|
||
const struct rb_node *prev0;
|
||
const struct rb_node *next0;
|
||
|
||
prev0 = rb_tree_iterate_const(rbt, self, RB_NODE_LEFT);
|
||
KASSERT(prev0 != NULL);
|
||
KASSERT(RB_RIGHT_SENTINEL_P(prev0));
|
||
|
||
next0 = rb_tree_iterate_const(rbt, self, RB_NODE_RIGHT);
|
||
KASSERT(next0 != NULL);
|
||
KASSERT(RB_LEFT_SENTINEL_P(next0));
|
||
}
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
static unsigned int
|
||
rb_tree_count_black(const struct rb_node *self)
|
||
{
|
||
unsigned int left, right;
|
||
|
||
if (RB_SENTINEL_P(self))
|
||
return 0;
|
||
|
||
left = rb_tree_count_black(self->rb_left);
|
||
right = rb_tree_count_black(self->rb_right);
|
||
|
||
KASSERT(left == right);
|
||
|
||
return left + RB_BLACK_P(self);
|
||
}
|
||
|
||
void
|
||
_prop_rb_tree_check(const struct rb_tree *rbt, bool red_check)
|
||
{
|
||
const struct rb_node *self;
|
||
const struct rb_node *prev;
|
||
unsigned int count;
|
||
|
||
KASSERT(rbt->rbt_root == NULL || rbt->rbt_root->rb_position == RB_NODE_LEFT);
|
||
|
||
prev = NULL;
|
||
count = 0;
|
||
TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
|
||
rb_tree_check_node(rbt, self, prev, false);
|
||
count++;
|
||
}
|
||
KASSERT(rbt->rbt_count == count);
|
||
KASSERT(RB_SENTINEL_P(rbt->rbt_root)
|
||
|| rb_tree_count_black(rbt->rbt_root));
|
||
|
||
/*
|
||
* The root must be black.
|
||
* There can never be two adjacent red nodes.
|
||
*/
|
||
if (red_check) {
|
||
KASSERT(rbt->rbt_root == NULL || RB_BLACK_P(rbt->rbt_root));
|
||
TAILQ_FOREACH(self, &rbt->rbt_nodes, rb_link) {
|
||
rb_tree_check_node(rbt, self, NULL, true);
|
||
}
|
||
}
|
||
}
|
||
#endif /* RBDEBUG */
|