minix/minix/benchmarks/unixbench-5.1.2/src/ubgears.c

651 lines
19 KiB
C

/*
* Copyright (C) 1999-2001 Brian Paul All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
* AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* $XFree86: xc/programs/glxgears/glxgears.c,v 1.3tsi Exp $ */
/*
* This is a port of the infamous "gears" demo to straight GLX (i.e. no GLUT)
* Port by Brian Paul 23 March 2001
*
* Exact timing added by Behdad Esfahbod to achieve a fixed speed regardless
* of frame rate. November 2003
*
* Printer support added by Roland Mainz <roland.mainz@nrubsig.org>. April 2004
*
* This version modified by Ian Smith, 30 Sept 2007, to make ubgears.
* ubgears is cusoimised for use in the UnixBench benchmarking suite.
* Some redundant stuff is gone, and the -time option is added.
* Mainly it's forked so we don't use the host's version, which could change
* from platform to platform.
*
* Command line options:
* -display Set X11 display for output.
* -info Print additional GLX information.
* -time <t> Run for <t> seconds and produce a performance report.
* -h Print this help page.
* -v Verbose output.
*
*/
#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/keysym.h>
#include <GL/gl.h>
#include <GL/glx.h>
#include <sys/time.h>
#include <sched.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#ifndef M_PI
#define M_PI 3.14159265
#endif /* !M_PI */
/* Turn a NULL pointer string into an empty string */
#define NULLSTR(x) (((x)!=NULL)?(x):(""))
#define Log(x) { if(verbose) printf x; }
#define Msg(x) { printf x; }
/* Globla vars */
/* program name (from argv[0]) */
static const char *ProgramName;
/* verbose output what the program is doing */
static Bool verbose = False;
/* time in microseconds to run for; -1 means forever. */
static int runTime = -1;
/* Time at which start_time(void) was called. */
static struct timeval clockStart;
/* XXX this probably isn't very portable */
/* return current time (in seconds) */
static void
start_time(void)
{
(void) gettimeofday(&clockStart, 0);
}
/*
* return time (in microseconds) since start_time(void) was called.
*
* The older version of this function randomly returned negative results.
* This version won't, up to 2000 seconds and some.
*/
static long
current_time(void)
{
struct timeval tv;
long secs, micros;
(void) gettimeofday(&tv, 0);
secs = tv.tv_sec - clockStart.tv_sec;
micros = tv.tv_usec - clockStart.tv_usec;
if (micros < 0) {
--secs;
micros += 1000000;
}
return secs * 1000000 + micros;
}
static
void usage(void)
{
fprintf (stderr, "usage: %s [options]\n", ProgramName);
fprintf (stderr, "-display\tSet X11 display for output.\n");
fprintf (stderr, "-info\t\tPrint additional GLX information.\n");
fprintf (stderr, "-time t\t\tRun for t seconds and report performance.\n");
fprintf (stderr, "-h\t\tPrint this help page.\n");
fprintf (stderr, "-v\t\tVerbose output.\n");
fprintf (stderr, "\n");
exit(EXIT_FAILURE);
}
static GLfloat view_rotx = 20.0, view_roty = 30.0, view_rotz = 0.0;
static GLint gear1, gear2, gear3;
static GLfloat angle = 0.0;
static GLint speed = 60;
static GLboolean printInfo = GL_FALSE;
/*
*
* Draw a gear wheel. You'll probably want to call this function when
* building a display list since we do a lot of trig here.
*
* Input: inner_radius - radius of hole at center
* outer_radius - radius at center of teeth
* width - width of gear
* teeth - number of teeth
* tooth_depth - depth of tooth
*/
static void
gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width,
GLint teeth, GLfloat tooth_depth)
{
GLint i;
GLfloat r0, r1, r2, maxr2, minr2;
GLfloat angle, da;
GLfloat u, v, len;
r0 = inner_radius;
r1 = outer_radius - tooth_depth / 2.0;
maxr2 = r2 = outer_radius + tooth_depth / 2.0;
minr2 = r2;
da = 2.0 * M_PI / teeth / 4.0;
glShadeModel(GL_FLAT);
glNormal3f(0.0, 0.0, 1.0);
/* draw front face */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5);
glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5);
if (i < teeth) {
glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5);
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
width * 0.5);
}
}
glEnd();
/* draw front sides of teeth */
glBegin(GL_QUADS);
for (i = 0; i < teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5);
glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5);
glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da),
width * 0.5);
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
width * 0.5);
r2 = minr2;
}
r2 = maxr2;
glEnd();
glNormal3f(0.0, 0.0, -1.0);
/* draw back face */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5);
glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5);
if (i < teeth) {
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
-width * 0.5);
glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5);
}
}
glEnd();
/* draw back sides of teeth */
glBegin(GL_QUADS);
da = 2.0 * M_PI / teeth / 4.0;
for (i = 0; i < teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
-width * 0.5);
glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da),
-width * 0.5);
glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5);
glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5);
r2 = minr2;
}
r2 = maxr2;
glEnd();
/* draw outward faces of teeth */
glBegin(GL_QUAD_STRIP);
for (i = 0; i < teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5);
glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5);
u = r2 * cos(angle + da) - r1 * cos(angle);
v = r2 * sin(angle + da) - r1 * sin(angle);
len = sqrt(u * u + v * v);
u /= len;
v /= len;
glNormal3f(v, -u, 0.0);
glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5);
glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5);
glNormal3f(cos(angle + 1.5 * da), sin(angle + 1.5 * da), 0.0);
glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da),
width * 0.5);
glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da),
-width * 0.5);
u = r1 * cos(angle + 3 * da) - r2 * cos(angle + 2 * da);
v = r1 * sin(angle + 3 * da) - r2 * sin(angle + 2 * da);
glNormal3f(v, -u, 0.0);
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
width * 0.5);
glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da),
-width * 0.5);
glNormal3f(cos(angle + 3.5 * da), sin(angle + 3.5 * da), 0.0);
r2 = minr2;
}
r2 = maxr2;
glVertex3f(r1 * cos(0), r1 * sin(0), width * 0.5);
glVertex3f(r1 * cos(0), r1 * sin(0), -width * 0.5);
glEnd();
glShadeModel(GL_SMOOTH);
/* draw inside radius cylinder */
glBegin(GL_QUAD_STRIP);
for (i = 0; i <= teeth; i++) {
angle = i * 2.0 * M_PI / teeth;
glNormal3f(-cos(angle), -sin(angle), 0.0);
glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5);
glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5);
}
glEnd();
}
static void
draw(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glPushMatrix();
glRotatef(view_rotx, 1.0, 0.0, 0.0);
glRotatef(view_roty, 0.0, 1.0, 0.0);
glRotatef(view_rotz, 0.0, 0.0, 1.0);
glPushMatrix();
glTranslatef(-3.0, -2.0, 0.0);
glRotatef(angle, 0.0, 0.0, 1.0);
glCallList(gear1);
glPopMatrix();
glPushMatrix();
glTranslatef(3.1, -2.0, 0.0);
glRotatef(-2.0 * angle - 9.0, 0.0, 0.0, 1.0);
glCallList(gear2);
glPopMatrix();
glPushMatrix();
glTranslatef(-3.1, 4.2, 0.0);
glRotatef(-2.0 * angle - 25.0, 0.0, 0.0, 1.0);
glCallList(gear3);
glPopMatrix();
glPopMatrix();
}
/* new window size or exposure */
static void
reshape(int width, int height)
{
GLfloat h = (GLfloat) height / (GLfloat) width;
glViewport(0, 0, (GLint) width, (GLint) height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
/* fit width and height */
if (h >= 1.0)
glFrustum(-1.0, 1.0, -h, h, 5.0, 60.0);
else
glFrustum(-1.0/h, 1.0/h, -1.0, 1.0, 5.0, 60.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -40.0);
}
static void
init(void)
{
static GLfloat pos[4] = { 5.0, 5.0, 10.0, 0.0 };
static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 };
static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 };
static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 };
glLightfv(GL_LIGHT0, GL_POSITION, pos);
glEnable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_DEPTH_TEST);
/* make the gears */
gear1 = glGenLists(1);
glNewList(gear1, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red);
gear(1.0, 4.0, 1.0, 20, 0.7);
glEndList();
gear2 = glGenLists(1);
glNewList(gear2, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green);
gear(0.5, 2.0, 2.0, 10, 0.7);
glEndList();
gear3 = glGenLists(1);
glNewList(gear3, GL_COMPILE);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, blue);
gear(1.3, 2.0, 0.5, 10, 0.7);
glEndList();
glEnable(GL_NORMALIZE);
}
/*
* Create an RGB, double-buffered window.
* Return the window and context handles.
*/
static void
make_window( Display *dpy, Screen *scr,
const char *name,
int x, int y, int width, int height,
Window *winRet, GLXContext *ctxRet)
{
int attrib[] = { GLX_RGBA,
GLX_RED_SIZE, 1,
GLX_GREEN_SIZE, 1,
GLX_BLUE_SIZE, 1,
GLX_DOUBLEBUFFER,
GLX_DEPTH_SIZE, 1,
None };
int scrnum;
XSetWindowAttributes attr;
unsigned long mask;
Window root;
Window win;
GLXContext ctx;
XVisualInfo *visinfo;
GLint max[2] = { 0, 0 };
scrnum = XScreenNumberOfScreen(scr);
root = XRootWindow(dpy, scrnum);
visinfo = glXChooseVisual( dpy, scrnum, attrib );
if (!visinfo) {
fprintf(stderr, "%s: Error: couldn't get an RGB, Double-buffered visual.\n", ProgramName);
exit(EXIT_FAILURE);
}
/* window attributes */
attr.background_pixel = 0;
attr.border_pixel = 0;
attr.colormap = XCreateColormap( dpy, root, visinfo->visual, AllocNone);
attr.event_mask = StructureNotifyMask | ExposureMask | KeyPressMask;
mask = CWBackPixel | CWBorderPixel | CWColormap | CWEventMask;
win = XCreateWindow( dpy, root, x, y, width, height,
0, visinfo->depth, InputOutput,
visinfo->visual, mask, &attr );
/* set hints and properties */
{
XSizeHints sizehints;
sizehints.x = x;
sizehints.y = y;
sizehints.width = width;
sizehints.height = height;
sizehints.flags = USSize | USPosition;
XSetNormalHints(dpy, win, &sizehints);
XSetStandardProperties(dpy, win, name, name,
None, (char **)NULL, 0, &sizehints);
}
ctx = glXCreateContext( dpy, visinfo, NULL, True );
if (!ctx) {
fprintf(stderr, "%s: Error: glXCreateContext failed.\n", ProgramName);
exit(EXIT_FAILURE);
}
XFree(visinfo);
XMapWindow(dpy, win);
glXMakeCurrent(dpy, win, ctx);
/* Check for maximum size supported by the GL rasterizer */
glGetIntegerv(GL_MAX_VIEWPORT_DIMS, max);
if (printInfo)
printf("GL_MAX_VIEWPORT_DIMS=%d/%d\n", (int)max[0], (int)max[1]);
if (width > max[0] || height > max[1]) {
fprintf(stderr, "%s: Error: Requested window size (%d/%d) larger than "
"maximum supported by GL engine (%d/%d).\n",
ProgramName, width, height, (int)max[0], (int)max[1]);
exit(EXIT_FAILURE);
}
*winRet = win;
*ctxRet = ctx;
}
static void
event_loop(Display *dpy, Window win)
{
while (1) {
/* Process interactive events */
while (XPending(dpy) > 0) {
XEvent event;
XNextEvent(dpy, &event);
switch (event.type) {
case Expose:
Log(("Event: Expose\n"));
/* we'll redraw below */
break;
case ConfigureNotify:
Log(("Event: ConfigureNotify\n"));
reshape(event.xconfigure.width, event.xconfigure.height);
break;
}
}
{
/* Time at which we started measuring. */
static long startTime = 0;
/* Time of the previous frame. */
static long lastFrame = 0;
/* Time of the previous FPS report. */
static long lastFps = 0;
/* Number of frames we've done. */
static int frames = 0;
/* Number of frames we've done in the measured run. */
static long runFrames = 0;
long t = current_time();
long useconds;
if (!lastFrame)
lastFrame = t;
if (!lastFps)
lastFps = t;
/* How many microseconds since the previous frame? */
useconds = t - lastFrame;
if (!useconds) /* assume 100FPS if we don't have timer */
useconds = 10000;
/* Calculate how far the gears need to move and redraw. */
angle = angle + ((double)speed * useconds) / 1000000.0;
if (angle > 360.0)
angle = angle - 360.0; /* don't lose precision! */
draw();
glXSwapBuffers(dpy, win);
/* Done this frame. */
lastFrame = t;
frames++;
/* Every 5 seconds, print the FPS. */
if (t - lastFps >= 5000000L) {
GLfloat seconds = (t - lastFps) / 1000000.0;
GLfloat fps = frames / seconds;
printf("%d frames in %3.1f seconds = %6.3f FPS\n", frames, seconds,
fps);
lastFps = t;
frames = 0;
/*
* Set the start time now -- ie. after one report. This
* gives us pump-priming time before we start for real.
*/
if (runTime > 0 && startTime == 0) {
printf("Start timing!\n");
startTime = t;
}
}
if (startTime > 0)
++runFrames;
/* If our run time is done, finish. */
if (runTime > 0 && startTime > 0 && t - startTime > runTime) {
double time = (double) (t - startTime) / 1000000.0;
fprintf(stderr, "COUNT|%ld|1|fps\n", runFrames);
fprintf(stderr, "TIME|%.1f\n", time);
exit(0);
}
/* Need to give cpu away in order to get precise timing next cycle,
* otherwise, gettimeofday would return almost the same value. */
sched_yield();
}
}
}
int
main(int argc, char *argv[])
{
Bool use_threadsafe_api = False;
Display *dpy;
Window win;
Screen *screen;
GLXContext ctx;
char *dpyName = NULL;
int i;
XRectangle winrect;
ProgramName = argv[0];
for (i = 1; i < argc; i++) {
const char *arg = argv[i];
int len = strlen(arg);
if (strcmp(argv[i], "-display") == 0) {
if (++i >= argc)
usage();
dpyName = argv[i];
}
else if (strcmp(argv[i], "-info") == 0) {
printInfo = GL_TRUE;
}
else if (strcmp(argv[i], "-time") == 0) {
if (++i >= argc)
usage();
runTime = atoi(argv[i]) * 1000000;
}
else if (!strncmp("-v", arg, len)) {
verbose = True;
printInfo = GL_TRUE;
}
else if( !strncmp("-debug_use_threadsafe_api", arg, len) )
{
use_threadsafe_api = True;
}
else if (!strcmp(argv[i], "-h")) {
usage();
}
else
{
fprintf(stderr, "%s: Unsupported option '%s'.\n", ProgramName, argv[i]);
usage();
}
}
/* Init X threading API on demand (for debugging) */
if( use_threadsafe_api )
{
if( !XInitThreads() )
{
fprintf(stderr, "%s: XInitThreads() failure.\n", ProgramName);
exit(EXIT_FAILURE);
}
}
dpy = XOpenDisplay(dpyName);
if (!dpy) {
fprintf(stderr, "%s: Error: couldn't open display '%s'\n", ProgramName, dpyName);
return EXIT_FAILURE;
}
screen = XDefaultScreenOfDisplay(dpy);
winrect.x = 0;
winrect.y = 0;
winrect.width = 300;
winrect.height = 300;
Log(("Window x=%d, y=%d, width=%d, height=%d\n",
(int)winrect.x, (int)winrect.y, (int)winrect.width, (int)winrect.height));
make_window(dpy, screen, "ubgears", winrect.x, winrect.y, winrect.width, winrect.height, &win, &ctx);
reshape(winrect.width, winrect.height);
if (printInfo) {
printf("GL_RENDERER = %s\n", (char *) glGetString(GL_RENDERER));
printf("GL_VERSION = %s\n", (char *) glGetString(GL_VERSION));
printf("GL_VENDOR = %s\n", (char *) glGetString(GL_VENDOR));
printf("GL_EXTENSIONS = %s\n", (char *) glGetString(GL_EXTENSIONS));
}
init();
start_time();
event_loop(dpy, win);
glXDestroyContext(dpy, ctx);
XDestroyWindow(dpy, win);
XCloseDisplay(dpy);
return EXIT_SUCCESS;
}