/* * Copyright (C) 1999-2001 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* $XFree86: xc/programs/glxgears/glxgears.c,v 1.3tsi Exp $ */ /* * This is a port of the infamous "gears" demo to straight GLX (i.e. no GLUT) * Port by Brian Paul 23 March 2001 * * Exact timing added by Behdad Esfahbod to achieve a fixed speed regardless * of frame rate. November 2003 * * Printer support added by Roland Mainz . April 2004 * * This version modified by Ian Smith, 30 Sept 2007, to make ubgears. * ubgears is cusoimised for use in the UnixBench benchmarking suite. * Some redundant stuff is gone, and the -time option is added. * Mainly it's forked so we don't use the host's version, which could change * from platform to platform. * * Command line options: * -display Set X11 display for output. * -info Print additional GLX information. * -time Run for seconds and produce a performance report. * -h Print this help page. * -v Verbose output. * */ #include #include #include #include #include #include #include #include #include #include #include #include #ifndef M_PI #define M_PI 3.14159265 #endif /* !M_PI */ /* Turn a NULL pointer string into an empty string */ #define NULLSTR(x) (((x)!=NULL)?(x):("")) #define Log(x) { if(verbose) printf x; } #define Msg(x) { printf x; } /* Globla vars */ /* program name (from argv[0]) */ static const char *ProgramName; /* verbose output what the program is doing */ static Bool verbose = False; /* time in microseconds to run for; -1 means forever. */ static int runTime = -1; /* Time at which start_time(void) was called. */ static struct timeval clockStart; /* XXX this probably isn't very portable */ /* return current time (in seconds) */ static void start_time(void) { (void) gettimeofday(&clockStart, 0); } /* * return time (in microseconds) since start_time(void) was called. * * The older version of this function randomly returned negative results. * This version won't, up to 2000 seconds and some. */ static long current_time(void) { struct timeval tv; long secs, micros; (void) gettimeofday(&tv, 0); secs = tv.tv_sec - clockStart.tv_sec; micros = tv.tv_usec - clockStart.tv_usec; if (micros < 0) { --secs; micros += 1000000; } return secs * 1000000 + micros; } static void usage(void) { fprintf (stderr, "usage: %s [options]\n", ProgramName); fprintf (stderr, "-display\tSet X11 display for output.\n"); fprintf (stderr, "-info\t\tPrint additional GLX information.\n"); fprintf (stderr, "-time t\t\tRun for t seconds and report performance.\n"); fprintf (stderr, "-h\t\tPrint this help page.\n"); fprintf (stderr, "-v\t\tVerbose output.\n"); fprintf (stderr, "\n"); exit(EXIT_FAILURE); } static GLfloat view_rotx = 20.0, view_roty = 30.0, view_rotz = 0.0; static GLint gear1, gear2, gear3; static GLfloat angle = 0.0; static GLint speed = 60; static GLboolean printInfo = GL_FALSE; /* * * Draw a gear wheel. You'll probably want to call this function when * building a display list since we do a lot of trig here. * * Input: inner_radius - radius of hole at center * outer_radius - radius at center of teeth * width - width of gear * teeth - number of teeth * tooth_depth - depth of tooth */ static void gear(GLfloat inner_radius, GLfloat outer_radius, GLfloat width, GLint teeth, GLfloat tooth_depth) { GLint i; GLfloat r0, r1, r2, maxr2, minr2; GLfloat angle, da; GLfloat u, v, len; r0 = inner_radius; r1 = outer_radius - tooth_depth / 2.0; maxr2 = r2 = outer_radius + tooth_depth / 2.0; minr2 = r2; da = 2.0 * M_PI / teeth / 4.0; glShadeModel(GL_FLAT); glNormal3f(0.0, 0.0, 1.0); /* draw front face */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); if (i < teeth) { glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); } } glEnd(); /* draw front sides of teeth */ glBegin(GL_QUADS); for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); r2 = minr2; } r2 = maxr2; glEnd(); glNormal3f(0.0, 0.0, -1.0); /* draw back face */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); if (i < teeth) { glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); } } glEnd(); /* draw back sides of teeth */ glBegin(GL_QUADS); da = 2.0 * M_PI / teeth / 4.0; for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), -width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); r2 = minr2; } r2 = maxr2; glEnd(); /* draw outward faces of teeth */ glBegin(GL_QUAD_STRIP); for (i = 0; i < teeth; i++) { angle = i * 2.0 * M_PI / teeth; glVertex3f(r1 * cos(angle), r1 * sin(angle), width * 0.5); glVertex3f(r1 * cos(angle), r1 * sin(angle), -width * 0.5); u = r2 * cos(angle + da) - r1 * cos(angle); v = r2 * sin(angle + da) - r1 * sin(angle); len = sqrt(u * u + v * v); u /= len; v /= len; glNormal3f(v, -u, 0.0); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), width * 0.5); glVertex3f(r2 * cos(angle + da), r2 * sin(angle + da), -width * 0.5); glNormal3f(cos(angle + 1.5 * da), sin(angle + 1.5 * da), 0.0); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), width * 0.5); glVertex3f(r2 * cos(angle + 2 * da), r2 * sin(angle + 2 * da), -width * 0.5); u = r1 * cos(angle + 3 * da) - r2 * cos(angle + 2 * da); v = r1 * sin(angle + 3 * da) - r2 * sin(angle + 2 * da); glNormal3f(v, -u, 0.0); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), width * 0.5); glVertex3f(r1 * cos(angle + 3 * da), r1 * sin(angle + 3 * da), -width * 0.5); glNormal3f(cos(angle + 3.5 * da), sin(angle + 3.5 * da), 0.0); r2 = minr2; } r2 = maxr2; glVertex3f(r1 * cos(0), r1 * sin(0), width * 0.5); glVertex3f(r1 * cos(0), r1 * sin(0), -width * 0.5); glEnd(); glShadeModel(GL_SMOOTH); /* draw inside radius cylinder */ glBegin(GL_QUAD_STRIP); for (i = 0; i <= teeth; i++) { angle = i * 2.0 * M_PI / teeth; glNormal3f(-cos(angle), -sin(angle), 0.0); glVertex3f(r0 * cos(angle), r0 * sin(angle), -width * 0.5); glVertex3f(r0 * cos(angle), r0 * sin(angle), width * 0.5); } glEnd(); } static void draw(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glPushMatrix(); glRotatef(view_rotx, 1.0, 0.0, 0.0); glRotatef(view_roty, 0.0, 1.0, 0.0); glRotatef(view_rotz, 0.0, 0.0, 1.0); glPushMatrix(); glTranslatef(-3.0, -2.0, 0.0); glRotatef(angle, 0.0, 0.0, 1.0); glCallList(gear1); glPopMatrix(); glPushMatrix(); glTranslatef(3.1, -2.0, 0.0); glRotatef(-2.0 * angle - 9.0, 0.0, 0.0, 1.0); glCallList(gear2); glPopMatrix(); glPushMatrix(); glTranslatef(-3.1, 4.2, 0.0); glRotatef(-2.0 * angle - 25.0, 0.0, 0.0, 1.0); glCallList(gear3); glPopMatrix(); glPopMatrix(); } /* new window size or exposure */ static void reshape(int width, int height) { GLfloat h = (GLfloat) height / (GLfloat) width; glViewport(0, 0, (GLint) width, (GLint) height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); /* fit width and height */ if (h >= 1.0) glFrustum(-1.0, 1.0, -h, h, 5.0, 60.0); else glFrustum(-1.0/h, 1.0/h, -1.0, 1.0, 5.0, 60.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(0.0, 0.0, -40.0); } static void init(void) { static GLfloat pos[4] = { 5.0, 5.0, 10.0, 0.0 }; static GLfloat red[4] = { 0.8, 0.1, 0.0, 1.0 }; static GLfloat green[4] = { 0.0, 0.8, 0.2, 1.0 }; static GLfloat blue[4] = { 0.2, 0.2, 1.0, 1.0 }; glLightfv(GL_LIGHT0, GL_POSITION, pos); glEnable(GL_CULL_FACE); glEnable(GL_LIGHTING); glEnable(GL_LIGHT0); glEnable(GL_DEPTH_TEST); /* make the gears */ gear1 = glGenLists(1); glNewList(gear1, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, red); gear(1.0, 4.0, 1.0, 20, 0.7); glEndList(); gear2 = glGenLists(1); glNewList(gear2, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, green); gear(0.5, 2.0, 2.0, 10, 0.7); glEndList(); gear3 = glGenLists(1); glNewList(gear3, GL_COMPILE); glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE, blue); gear(1.3, 2.0, 0.5, 10, 0.7); glEndList(); glEnable(GL_NORMALIZE); } /* * Create an RGB, double-buffered window. * Return the window and context handles. */ static void make_window( Display *dpy, Screen *scr, const char *name, int x, int y, int width, int height, Window *winRet, GLXContext *ctxRet) { int attrib[] = { GLX_RGBA, GLX_RED_SIZE, 1, GLX_GREEN_SIZE, 1, GLX_BLUE_SIZE, 1, GLX_DOUBLEBUFFER, GLX_DEPTH_SIZE, 1, None }; int scrnum; XSetWindowAttributes attr; unsigned long mask; Window root; Window win; GLXContext ctx; XVisualInfo *visinfo; GLint max[2] = { 0, 0 }; scrnum = XScreenNumberOfScreen(scr); root = XRootWindow(dpy, scrnum); visinfo = glXChooseVisual( dpy, scrnum, attrib ); if (!visinfo) { fprintf(stderr, "%s: Error: couldn't get an RGB, Double-buffered visual.\n", ProgramName); exit(EXIT_FAILURE); } /* window attributes */ attr.background_pixel = 0; attr.border_pixel = 0; attr.colormap = XCreateColormap( dpy, root, visinfo->visual, AllocNone); attr.event_mask = StructureNotifyMask | ExposureMask | KeyPressMask; mask = CWBackPixel | CWBorderPixel | CWColormap | CWEventMask; win = XCreateWindow( dpy, root, x, y, width, height, 0, visinfo->depth, InputOutput, visinfo->visual, mask, &attr ); /* set hints and properties */ { XSizeHints sizehints; sizehints.x = x; sizehints.y = y; sizehints.width = width; sizehints.height = height; sizehints.flags = USSize | USPosition; XSetNormalHints(dpy, win, &sizehints); XSetStandardProperties(dpy, win, name, name, None, (char **)NULL, 0, &sizehints); } ctx = glXCreateContext( dpy, visinfo, NULL, True ); if (!ctx) { fprintf(stderr, "%s: Error: glXCreateContext failed.\n", ProgramName); exit(EXIT_FAILURE); } XFree(visinfo); XMapWindow(dpy, win); glXMakeCurrent(dpy, win, ctx); /* Check for maximum size supported by the GL rasterizer */ glGetIntegerv(GL_MAX_VIEWPORT_DIMS, max); if (printInfo) printf("GL_MAX_VIEWPORT_DIMS=%d/%d\n", (int)max[0], (int)max[1]); if (width > max[0] || height > max[1]) { fprintf(stderr, "%s: Error: Requested window size (%d/%d) larger than " "maximum supported by GL engine (%d/%d).\n", ProgramName, width, height, (int)max[0], (int)max[1]); exit(EXIT_FAILURE); } *winRet = win; *ctxRet = ctx; } static void event_loop(Display *dpy, Window win) { while (1) { /* Process interactive events */ while (XPending(dpy) > 0) { XEvent event; XNextEvent(dpy, &event); switch (event.type) { case Expose: Log(("Event: Expose\n")); /* we'll redraw below */ break; case ConfigureNotify: Log(("Event: ConfigureNotify\n")); reshape(event.xconfigure.width, event.xconfigure.height); break; } } { /* Time at which we started measuring. */ static long startTime = 0; /* Time of the previous frame. */ static long lastFrame = 0; /* Time of the previous FPS report. */ static long lastFps = 0; /* Number of frames we've done. */ static int frames = 0; /* Number of frames we've done in the measured run. */ static long runFrames = 0; long t = current_time(); long useconds; if (!lastFrame) lastFrame = t; if (!lastFps) lastFps = t; /* How many microseconds since the previous frame? */ useconds = t - lastFrame; if (!useconds) /* assume 100FPS if we don't have timer */ useconds = 10000; /* Calculate how far the gears need to move and redraw. */ angle = angle + ((double)speed * useconds) / 1000000.0; if (angle > 360.0) angle = angle - 360.0; /* don't lose precision! */ draw(); glXSwapBuffers(dpy, win); /* Done this frame. */ lastFrame = t; frames++; /* Every 5 seconds, print the FPS. */ if (t - lastFps >= 5000000L) { GLfloat seconds = (t - lastFps) / 1000000.0; GLfloat fps = frames / seconds; printf("%d frames in %3.1f seconds = %6.3f FPS\n", frames, seconds, fps); lastFps = t; frames = 0; /* * Set the start time now -- ie. after one report. This * gives us pump-priming time before we start for real. */ if (runTime > 0 && startTime == 0) { printf("Start timing!\n"); startTime = t; } } if (startTime > 0) ++runFrames; /* If our run time is done, finish. */ if (runTime > 0 && startTime > 0 && t - startTime > runTime) { double time = (double) (t - startTime) / 1000000.0; fprintf(stderr, "COUNT|%ld|1|fps\n", runFrames); fprintf(stderr, "TIME|%.1f\n", time); exit(0); } /* Need to give cpu away in order to get precise timing next cycle, * otherwise, gettimeofday would return almost the same value. */ sched_yield(); } } } int main(int argc, char *argv[]) { Bool use_threadsafe_api = False; Display *dpy; Window win; Screen *screen; GLXContext ctx; char *dpyName = NULL; int i; XRectangle winrect; ProgramName = argv[0]; for (i = 1; i < argc; i++) { const char *arg = argv[i]; int len = strlen(arg); if (strcmp(argv[i], "-display") == 0) { if (++i >= argc) usage(); dpyName = argv[i]; } else if (strcmp(argv[i], "-info") == 0) { printInfo = GL_TRUE; } else if (strcmp(argv[i], "-time") == 0) { if (++i >= argc) usage(); runTime = atoi(argv[i]) * 1000000; } else if (!strncmp("-v", arg, len)) { verbose = True; printInfo = GL_TRUE; } else if( !strncmp("-debug_use_threadsafe_api", arg, len) ) { use_threadsafe_api = True; } else if (!strcmp(argv[i], "-h")) { usage(); } else { fprintf(stderr, "%s: Unsupported option '%s'.\n", ProgramName, argv[i]); usage(); } } /* Init X threading API on demand (for debugging) */ if( use_threadsafe_api ) { if( !XInitThreads() ) { fprintf(stderr, "%s: XInitThreads() failure.\n", ProgramName); exit(EXIT_FAILURE); } } dpy = XOpenDisplay(dpyName); if (!dpy) { fprintf(stderr, "%s: Error: couldn't open display '%s'\n", ProgramName, dpyName); return EXIT_FAILURE; } screen = XDefaultScreenOfDisplay(dpy); winrect.x = 0; winrect.y = 0; winrect.width = 300; winrect.height = 300; Log(("Window x=%d, y=%d, width=%d, height=%d\n", (int)winrect.x, (int)winrect.y, (int)winrect.width, (int)winrect.height)); make_window(dpy, screen, "ubgears", winrect.x, winrect.y, winrect.width, winrect.height, &win, &ctx); reshape(winrect.width, winrect.height); if (printInfo) { printf("GL_RENDERER = %s\n", (char *) glGetString(GL_RENDERER)); printf("GL_VERSION = %s\n", (char *) glGetString(GL_VERSION)); printf("GL_VENDOR = %s\n", (char *) glGetString(GL_VENDOR)); printf("GL_EXTENSIONS = %s\n", (char *) glGetString(GL_EXTENSIONS)); } init(); start_time(); event_loop(dpy, win); glXDestroyContext(dpy, ctx); XDestroyWindow(dpy, win); XCloseDisplay(dpy); return EXIT_SUCCESS; }