Commit graph

24 commits

Author SHA1 Message Date
Lionel Sambuc
f14fb60209 Libraries updates and cleanup
* Updating common/lib
 * Updating lib/csu
 * Updating lib/libc
 * Updating libexec/ld.elf_so
 * Corrected test on __minix in featuretest to actually follow the
   meaning of the comment.
 * Cleaned up _REENTRANT-related defintions.
 * Disabled -D_REENTRANT for libfetch
 * Removing some unneeded __NBSD_LIBC defines and tests

Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
2013-01-14 11:36:26 +01:00
David van Moolenbroek
cf9a4ec79b Kernel: clean up include statements a bit
Coverity was flagging a recursive include between kernel.h and
cpulocals.h. As cpulocals.h also included proc.h, we can move that
include statement into kernel.h, and clean up the source files'
include statements accordingly.
2012-08-14 16:29:05 +00:00
Ben Gras
cbcdb838f1 various coverity-inspired fixes
. some strncpy/strcpy to strlcpy conversions
	. new <minix/param.h> to avoid including other minix headers
	  that have colliding definitions with library and commands code,
	  causing parse warnings
	. removed some dead code / assignments
2012-07-16 14:00:56 +02:00
Ben Gras
50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Ben Gras
7336a67dfe retire PUBLIC, PRIVATE and FORWARD 2012-03-25 21:58:14 +02:00
Ben Gras
6a73e85ad1 retire _PROTOTYPE
. only good for obsolete K&R support
	. also remove a stray ansi.h and the proto cmd
2012-03-25 16:17:10 +02:00
Ben Gras
a77c2973b3 fix clang warnings -R in kernel/ and servers/ 2011-06-09 16:09:13 +02:00
Arun Thomas
361f377493 Fix multiboot for ACK-built images
Move the profiling buffer to the end of the data segment
2010-12-17 13:47:11 +00:00
David van Moolenbroek
b6f3b7e7f6 Kernel: statistical profiling fixes
- create name entries for forked processes as well;
- create name entries only for system processes.
2010-12-16 09:46:26 +00:00
Tomas Hruby
d2b56f60da sprofile exports kernel sample entries
- in case of kernel hit while proc_ptr is IDLE, account for idle time
  instead of taking kernel sample
2010-09-23 10:49:50 +00:00
Tomas Hruby
87c576584d Internal 64M buffer for profiling
- when profiling is compiled in kernel includes a 64M buffer for
  sample

- 64M is the default used by profile tool as its buffer

- when using nmi profiling it is not possible to always copy sample
  stright to userland as the nmi may (and does) happen in bad moments

- reduces sampling overhead as samples are copied out only when
  profiling stops
2010-09-23 10:49:48 +00:00
Tomas Hruby
e63b85a50b NMI sampling
- if profile --nmi kernel uses NMI watchdog based sampling based on
  Intel architecture performance counters

- using NMI makes kernel profiling possible

- watchdog kernel lockup detection is disabled while sampling as we
  may get unpredictable interrupts in kernel and thus possibly many
  false positives

- if watchdog is not enabled at boot time, profiling enables it and
  turns it of again when done
2010-09-23 10:49:45 +00:00
Tomas Hruby
db12229ce3 New profile protocol
- when kernel profiles a process for the first time it saves an entry
  describing the process [endpoint|name]

- every profile sample is only [endpoint|pc]

- profile utility creates a table of endpoint <-> name relations and
  translates endpoints of samples into names and writing out the
  results to comply with the processing tools

- "task" endpoints like KERNEL are negative thus we must cast it to
  unsigned when hashing
2010-09-23 10:49:39 +00:00
Tomas Hruby
13a0d5fa5e SMP - Cpu local variables
- most global variables carry information which is specific to the
  local CPU and each CPU must have its own copy

- cpu local variable must be declared in cpulocal.h between
  DECLARE_CPULOCAL_START and DECLARE_CPULOCAL_END markers using
  DECLARE_CPULOCAL macro

- to access the cpu local data the provided macros must be used

	get_cpu_var(cpu, name)
	get_cpu_var_ptr(cpu, name)

	get_cpulocal_var(name)
	get_cpulocal_var_ptr(name)

- using this macros makes future changes in the implementation
  possible

- switching to ELF will make the declaration of cpu local data much
  simpler, e.g.

  CPULOCAL int blah;

  anywhere in the kernel source code
2010-09-15 14:09:46 +00:00
Ben Gras
86e8eff905 remove intr_disabled() as interrupts are always disabled in the kernel now. 2010-04-26 15:32:42 +00:00
Kees van Reeuwijk
98493805fd Lots of const correctness. 2010-03-27 14:31:00 +00:00
Tomas Hruby
728f0f0c49 Removal of the system task
* Userspace change to use the new kernel calls

	- _taskcall(SYSTASK...) changed to _kernel_call(...)

	- int 32 reused for the kernel calls

	- _do_kernel_call() to make the trap to kernel

	- kernel_call() to make the actuall kernel call from C using
	  _do_kernel_call()

	- unlike ipc call the kernel call always succeeds as kernel is
	  always available, however, kernel may return an error

* Kernel side implementation of kernel calls

	- the SYSTEm task does not run, only the proc table entry is
	  preserved

	- every data_copy(SYSTEM is no data_copy(KERNEL

	- "locking" is an empty operation now as everything runs in
	  kernel

	- sys_task() is replaced by kernel_call() which copies the
	  message into kernel, dispatches the call to its handler and
	  finishes by either copying the results back to userspace (if
	  need be) or by suspending the process because of VM

	- suspended processes are later made runnable once the memory
	  issue is resolved, picked up by the scheduler and only at
	  this time the call is resumed (in fact restarted) which does
	  not need to copy the message from userspace as the message
	  is already saved in the process structure.

	- no ned for the vmrestart queue, the scheduler will restart
	  the system calls

	- no special case in do_vmctl(), all requests remove the
	  RTS_VMREQUEST flag
2010-02-09 15:20:09 +00:00
Kees van Reeuwijk
a7cee5bec4 Removed unused symbols.
Minor cleanups.
2010-01-22 22:01:08 +00:00
Tomas Hruby
daf7940c69 pick_proc() called only just before returning to userspace
- new proc_is_runnable() macro to test whether process is runnable. All tests
  whether p_rts_flags == 0 converted to use this macro

- pick_proc() calls removed from enqueue() and dequeue()

- removed the test for recursive calls from pick_proc() as it certainly cannot
  be called recursively now

- PREEMPTED flag to mark processes that were preempted by enqueueuing a higher
  priority process in enqueue()

- enqueue_head() to enqueue PREEMPTED processes again at the head of their
  current priority queue

- NO_QUANTUM flag to block and dequeue processes preempted by timer tick with
  exceeded quantum. They need to be enqueued again in schedcheck()

- next_ptr global variable removed
2009-11-09 17:48:31 +00:00
Ben Gras
6ac0338584 Don't declare the cprof buf if CPROFILE isn't on. 2009-02-06 16:31:28 +00:00
Ben Gras
c27008fbcc cprofile not conditional 2009-01-09 21:44:52 +00:00
Ben Gras
c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00
Ben Gras
6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00
Ben Gras
7195fe3325 System statistical and call profiling
support by Rogier Meurs <rogier@meurs.org>.
2006-10-30 15:53:38 +00:00