Commit graph

59 commits

Author SHA1 Message Date
Tomas Hruby
b4cf88a04f Userspace scheduling
- cotributed by Bjorn Swift

- In this first phase, scheduling is moved from the kernel to the PM
  server. The next steps are to a) moving scheduling to its own server
  and b) include useful information in the "out of quantum" message,
  so that the scheduler can make use of this information.

- The kernel process table now keeps record of who is responsible for
  scheduling each process (p_scheduler). When this pointer is NULL,
  the process will be scheduled by the kernel. If such a process runs
  out of quantum, the kernel will simply renew its quantum an requeue
  it.

- When PM loads, it will take over scheduling of all running
  processes, except system processes, using sys_schedctl().
  Essentially, this only results in taking over init. As children
  inherit a scheduler from their parent, user space programs forked by
  init will inherit PM (for now) as their scheduler.

 - Once a process has been assigned a scheduler, and runs out of
   quantum, its RTS_NO_QUANTUM flag will be set and the process
   dequeued. The kernel will send a message to the scheduler, on the
   process' behalf, informing the scheduler that it has run out of
   quantum. The scheduler can take what ever action it pleases, based
   on its policy, and then reschedule the process using the
   sys_schedule() system call.

- Balance queues does not work as before. While the old in-kernel
  function used to renew the quantum of processes in the highest
  priority run queue, the user-space implementation only acts on
  processes that have been bumped down to a lower priority queue.
  This approach reacts slower to changes than the old one, but saves
  us sending a sys_schedule message for each process every time we
  balance the queues. Currently, when processes are moved up a
  priority queue, their quantum is also renewed, but this can be
  fiddled with.

- do_nice has been removed from kernel. PM answers to get- and
  setpriority calls, updates it's own nice variable as well as the
  max_run_queue. This will be refactored once scheduling is moved to a
  separate server. We will probably have PM update it's local nice
  value and then send a message to whoever is scheduling the process.

- changes to fix an issue in do_fork() where processes could run out
  of quantum but bypassing the code path that handles it correctly.
  The future plan is to remove the policy from do_fork() and implement
  it in userspace too.
2010-03-29 11:07:20 +00:00
Tomas Hruby
a3ffc0f7ad Removed NIL_SYS_PROC and NIL_PROC
- NIL_PROC replaced by simple NULLs
2010-03-28 09:54:32 +00:00
Kees van Reeuwijk
98493805fd Lots of const correctness. 2010-03-27 14:31:00 +00:00
Kees van Reeuwijk
97c169b93a Remove some unused #include.
Remove some unused variables and computations on them.
2010-02-17 20:24:42 +00:00
Tomas Hruby
1b56fdb33c Time accounting based on TSC
- as thre are still KERNEL and IDLE entries, time accounting for
  kernel and idle time works the same as for any other process

- everytime we stop accounting for the currently running process,
  kernel or idle, we read the TSC counter and increment the p_cycles
  entry.

- the process cycles inherently include some of the kernel cycles as
  we can stop accounting for the process only after we save its
  context and we start accounting just before we restore its context

- this assumes that the system does not scale the CPU frequency which
  will be true for ... long time ;-)
2010-02-10 15:36:54 +00:00
Tomas Hruby
ebba20a65d No CLOCK task
- no kernel tasks are runnable

- clock initialization moved to the end of main()

- the rest of the body of clock_task() is moved to bsp_timer_int_handler() as
  for now we are going to handle this on the bootstrap cpu. A change later is
  possible.
2010-02-09 15:22:43 +00:00
Kees van Reeuwijk
b67f788eea Removed a number of useless #includes 2010-01-26 10:59:01 +00:00
Kees van Reeuwijk
a701e290f7 Removed unused symbols.
Made some functions PRIVATE, including ones that aren't used anywhere.
2010-01-25 18:13:48 +00:00
Tomas Hruby
5efa92f754 NMI watchdog is an awesome feature for debugging locked up kernels.
There is not that much use for it on a single CPU, however, deadlock
between kernel and system task can be delected. Or a runaway loop.

If a kernel gets locked up the timer interrupts don't occure (as all
interrupts are disabled in kernel mode). The only chance is to
interrupt the kernel by a non-maskable interrupt.

This patch generates NMIs using performance counters. It uses the most
widely available performace counters. As the performance counters are 
highly model-specific this patch is not guaranteed to work on every
machine.  Unfortunately this is also true for KVM :-/ On the other
hand adding this feature for other models is not extremely difficult
and the framework makes it hopefully easy enough.

Depending on the frequency of the CPU an NMI is generated at most
about every 0.5s If the cpu's speed is less then 2Ghz it is generated
at most every 1s. In general an NMI is generated much less often as
the performance counter counts down only if the cpu is not idle.
Therefore the overhead of this feature is fairly minimal even if the
load is high.

Uppon detecting that the kernel is locked up the kernel dumps the 
state of the kernel registers and panics.

Local APIC must be enabled for the watchdog to work.

The code is _always_ compiled in, however, it is only enabled if  
watchdog=<non-zero> is set in the boot monitor.

One corner case is serial console debugging. As dumping a lot of stuff
to the serial link may take a lot of time, the watchdog does not 
detect lockups during this time!!! as it would result in too many
false positives. 10 nmi have to be handled before the lockup is
detected. This means something between ~5s to 10s.

Another corner case is that the watchdog is enabled only after the
paging is enabled as it would be pure madness to try to get it right.
2010-01-16 20:53:55 +00:00
David van Moolenbroek
fce9fd4b4e Add 'getidle' CPU utilization measurement infrastructure 2009-12-02 11:52:26 +00:00
David van Moolenbroek
709a739b52 Kernel: unbreak load averages 2009-11-28 13:16:03 +00:00
Tomas Hruby
a972f4bacc All macros defining rts flags are prefixed with RTS_
- macros used with RTS_SET group of macros to define struct proc p_rts_flags are
  now prefixed with RTS_ to make things clear
2009-11-10 09:11:13 +00:00
Tomas Hruby
daf7940c69 pick_proc() called only just before returning to userspace
- new proc_is_runnable() macro to test whether process is runnable. All tests
  whether p_rts_flags == 0 converted to use this macro

- pick_proc() calls removed from enqueue() and dequeue()

- removed the test for recursive calls from pick_proc() as it certainly cannot
  be called recursively now

- PREEMPTED flag to mark processes that were preempted by enqueueuing a higher
  priority process in enqueue()

- enqueue_head() to enqueue PREEMPTED processes again at the head of their
  current priority queue

- NO_QUANTUM flag to block and dequeue processes preempted by timer tick with
  exceeded quantum. They need to be enqueued again in schedcheck()

- next_ptr global variable removed
2009-11-09 17:48:31 +00:00
Tomas Hruby
ae75f9d4e5 Removal of the executable flag from files that cannot be executed
- 755 -> 644
2009-11-09 10:26:00 +00:00
Tomas Hruby
f2a1f21a39 Clock task split
- preemption handled in the clock timer interrupt handler, not in the clock task

- more achitecture independent clock timer handling code

- smp ready as each CPU can have its own timer
2009-11-06 09:04:15 +00:00
David van Moolenbroek
b423d7b477 Merge of David's ptrace branch. Summary:
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
  being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
  AMF_NOREPLY senda() flag

DETAILS

Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
  aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
  and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
  stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
  VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
  running while modifying its process structure

Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
  the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
  protocol message
o Detached debugger signals from general signal logic and from being
  blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
  one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
  are pending
o Fixed wait test for tracer, which was returning for children that were
  not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
  debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG

Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
  debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
  of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
  a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
  structure
o Removed T_STOP ptrace request again, as it does not help implementing
  debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)

Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
  with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
  satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
  #define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
  revealed RS-PM-VFS race condition triangle until VFS is asynchronous

System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
  signal set, rather than just the POSIX subset

Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
  structure clearer
o Fixed setpriority() being able to put to sleep processes using an
  invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there

Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code

THINGS OF POSSIBLE INTEREST

o It should now be possible to run PM at any priority, even lower than
  user processes
o No assumptions are made about communication speed between PM and VFS,
  although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
  only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 09:57:22 +00:00
Ben Gras
cd8b915ed9 Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
    on every kernel entry (trap, interrupt, exception). the primary
    purpose is to reduce the number of required reloads.
Result:
  - kernel can only access memory of process that was running when
    kernel was entered
  - kernel must be mapped into every process page table, so traps to
    kernel keep working
Problem:
  - kernel must often access memory of arbitrary processes (e.g. send
    arbitrary processes messages); this can't happen directly any more;
    usually because that process' page table isn't loaded at all, sometimes
    because that memory isn't mapped in at all, sometimes because it isn't
    mapped in read-write.
So:
  - kernel must be able to map in memory of any process, in its own
    address space.
Implementation:
  - VM and kernel share a range of memory in which addresses of
    all page tables of all processes are available. This has two purposes:
      . Kernel has to know what data to copy in order to map in a range
      . Kernel has to know where to write the data in order to map it in
    That last point is because kernel has to write in the currently loaded
    page table.
  - Processes and kernel are separated through segments; kernel segments
    haven't changed.
  - The kernel keeps the process whose page table is currently loaded
    in 'ptproc.'
  - If it wants to map in a range of memory, it writes the value of the
    page directory entry for that range into the page directory entry
    in the currently loaded map. There is a slot reserved for such
    purposes. The kernel can then access this memory directly.
  - In order to do this, its segment has been increased (and the
    segments of processes start where it ends).
  - In the pagefault handler, detect if the kernel is doing
    'trappable' memory access (i.e. a pagefault isn't a fatal
     error) and if so,
       - set the saved instruction pointer to phys_copy_fault,
	 breaking out of phys_copy
       - set the saved eax register to the address of the page
	 fault, both for sanity checking and for checking in
	 which of the two ranges that phys_copy was called
	 with the fault occured
  - Some boot-time processes do not have their own page table,
    and are mapped in with the kernel, and separated with
    segments. The kernel detects this using HASPT. If such a
    process has to be scheduled, any page table will work and
    no page table switch is done.

Major changes in kernel are
  - When accessing user processes memory, kernel no longer
    explicitly checks before it does so if that memory is OK.
    It simply makes the mapping (if necessary), tries to do the
    operation, and traps the pagefault if that memory isn't present;
    if that happens, the copy function returns EFAULT.
    So all of the CHECKRANGE_OR_SUSPEND macros are gone.
  - Kernel no longer has to copy/read and parse page tables.
  - A message copying optimisation: when messages are copied, and
    the recipient isn't mapped in, they are copied into a buffer
    in the kernel. This is done in QueueMess. The next time
    the recipient is scheduled, this message is copied into
    its memory. This happens in schedcheck().
    This eliminates the mapping/copying step for messages, and makes
    it easier to deliver messages. This eliminates soft_notify.
  - Kernel no longer creates a page table at all, so the vm_setbuf
    and pagetable writing in memory.c is gone.

Minor changes in kernel are
  - ipc_stats thrown out, wasn't used
  - misc flags all renamed to MF_*
  - NOREC_* macros to enter and leave functions that should not
    be called recursively; just sanity checks really
  - code to fully decode segment selectors and descriptors
    to print on exceptions
  - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 14:31:52 +00:00
David van Moolenbroek
323f0abdd6 Support for setitimer(ITIMER_VIRTUAL/ITIMER_PROF). New test (41) for setitimer. 2009-08-15 21:37:26 +00:00
Ben Gras
b784e88026 prototype 2009-01-22 17:09:45 +00:00
Ben Gras
c4fb567bd5 . replace HZ by runtime system_hz (sysenv variable 'hz')
. new flag PROC_FULLVM in table indicating process wants full address
   space (this is then created and managed by VM)
2008-12-11 14:15:23 +00:00
Ben Gras
a74132ec69 fix race condition that can trigger 'enqueue already ready process' panic. 2008-12-11 13:42:37 +00:00
Ben Gras
c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00
Philip Homburg
94bc849574 Poll serial line for debug output requests when do_serial_debug is true. 2007-04-23 13:56:27 +00:00
Ben Gras
3c907e6ef1 Sanity check in clock - process is supposed to be runnable when it's
interrupted.
2007-02-08 12:59:29 +00:00
Ben Gras
41e9fedf87 Mostly bugfixes of bugs triggered by the test set.
bugfixes:
 SYSTEM:
 . removed
        rc->p_priv->s_flags = 0;
   for the priv struct shared by all user processes in get_priv(). this
   should only be done once. doing a SYS_PRIV_USER in sys_privctl()
   caused the flags of all user processes to be reset, so they were no
   longer PREEMPTIBLE. this happened when RS executed a policy script.
   (this broke test1 in the test set)

 VFS/MFS:
 . chown can change the mode of a file, and chmod arguments are only
   part of the full file mode so the full filemode is slightly magic.
   changed these calls so that the final modes are returned to VFS, so
   that the vnode can be kept up-to-date.
   (this broke test11 in the test set)

 MFS:
 . lookup() checked for sizeof(string) instead of sizeof(user_path),
   truncating long path names
   (caught by test 23)
 . truncate functions neglected to update ctime
   (this broke test16)

 VFS:
 . corner case of an empty filename lookup caused fields of a request
   not to be filled in in the lookup functions, not making it clear
   that the lookup had failed, causing messages to garbage processes,
   causing strange failures.
   (caught by test 30)
 . trust v_size in vnode when doing reads or writes on non-special
   files, truncating i/o where necessary; this is necessary for pipes,
   as MFS can't tell when a pipe has been truncated without it being
   told explicitly each time.
   when the last reader/writer on a pipe closes, tell FS about
   the new size using truncate_vn().
   (this broke test 25, among others)
 . permission check for chdir() had disappeared; added a
   forbidden() call
   (caught by test 23)

new code, shouldn't change anything:
 . introduced RTS_SET, RTS_UNSET, and RTS_ISSET macro's, and their
   LOCK variants. These macros set and clear the p_rts_flags field,
   causing a lot of duplicated logic like

       old_flags = rp->p_rts_flags;            /* save value of the flags */
       rp->p_rts_flags &= ~NO_PRIV;
       if (old_flags != 0 && rp->p_rts_flags == 0) lock_enqueue(rp);

   to change into the simpler

       RTS_LOCK_UNSET(rp, NO_PRIV);

   so the macros take care of calling dequeue() and enqueue() (or lock_*()),
   as the case may be). This makes the code a bit more readable and a
   bit less fragile.
 . removed return code from do_clocktick in CLOCK as it currently
   never replies
 . removed some debug code from VFS
 . fixed grant debug message in device.c
 
preemptive checks, tests, changes:
 . added return code checks of receive() to SYSTEM and CLOCK
 . O_TRUNC should never arrive at MFS (added sanity check and removed
   O_TRUNC code)
 . user_path declared with PATH_MAX+1 to let it be null-terminated
 . checks in MFS to see if strings passed by VFS are null-terminated
 
 IS:
 . static irq name table thrown out
2007-02-01 17:50:02 +00:00
Ben Gras
6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00
Ben Gras
eae250dea4 . load average calculation changed to calculate it all over every tick
instead of keeping a running total of enqueued processes
   (because somehow the load average was broken)
 . added SI_KPROC_TAB to get a copy of kernel process table from PM, for
   a top implementation
 . fixed arg to sys_nice() to make it an endpoint, not a slot number
2006-03-16 09:33:35 +00:00
Jorrit Herder
021e3234d8 Jorrit's ... "progress?" 2006-03-10 16:10:05 +00:00
Ben Gras
1335d5d700 'proc number' is process slot, 'endpoint' are generation-aware process
instance numbers, encoded and decoded using macros in <minix/endpoint.h>.

proc number -> endpoint migration
  . proc_nr in the interrupt hook is now an endpoint, proc_nr_e.
  . m_source for messages and notifies is now an endpoint, instead of
    proc number.
  . isokendpt() converts an endpoint to a process number, returns
    success (but fails if the process number is out of range, the
    process slot is not a living process, or the given endpoint
    number does not match the endpoint number in the process slot,
    indicating an old process).
  . okendpt() is the same as isokendpt(), but panic()s if the conversion
    fails. This is mainly used for decoding message.m_source endpoints,
    and other endpoint numbers in kernel data structures, which should
    always be correct.
  . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt()
    get passed the __FILE__ and __LINE__ of the calling lines, and
    print messages about what is wrong with the endpoint number
    (out of range proc, empty proc, or inconsistent endpoint number),
    with the caller, making finding where the conversion failed easy
    without having to include code for every call to print where things
    went wrong. Sometimes this is harmless (wrong arg to a kernel call),
    sometimes it's a fatal internal inconsistency (bogus m_source).
  . some process table fields have been appended an _e to indicate it's
    become and endpoint.
  . process endpoint is stored in p_endpoint, without generation number.
    it turns out the kernel never needs the generation number, except
    when fork()ing, so it's decoded then.
  . kernel calls all take endpoints as arguments, not proc numbers.
    the one exception is sys_fork(), which needs to know in which slot
    to put the child.
2006-03-03 10:00:02 +00:00
Ben Gras
87f2236ad2 load average measurement implementation, accessable through
getloadavg() system call in the library.
2005-11-14 15:50:46 +00:00
Ben Gras
cc3201bacd Al's cosmetic rearrangement 2005-10-09 19:58:25 +00:00
Ben Gras
ab1374a9cb Comment corrections from Al 2005-10-07 13:23:18 +00:00
Ben Gras
4fc5f85a88 Corrected correction of clock's 2005-10-06 10:21:24 +00:00
Ben Gras
afc6721239 Al's comment fixes 2005-10-05 08:21:35 +00:00
Ben Gras
d11b2e4b8c Al's double-blank-line removal request 2005-08-22 15:23:47 +00:00
Jorrit Herder
872687ddfc Scheduling updates to the kernel. Sched() function now is single point for
policy. Actual policy not yet implemented.

PM calculates nice values for processes in boot image.

IS debug dumps improved (Shift+F1-F4).
2005-08-22 15:14:11 +00:00
Jorrit Herder
a01645b788 New scheduling code in kernel. Work in progress.
Round-robin within one priority queue works fine.
Ageing algorithm to be done.
2005-08-19 16:43:28 +00:00
Jorrit Herder
941b5ebd1c Fix to device table at FS.
BIOS and AT installed in /sbin.
Floppy boot fixed.
2005-08-05 18:57:20 +00:00
Jorrit Herder
b96c389e78 Various small cleanups and comments added. 2005-08-05 09:41:15 +00:00
Jorrit Herder
e561081545 Miscellaneous clean ups and fixes to the kernel.
Support for FLOPPY in boot image. (Set controller=fd at boot monitor.)
Moved major device numbers to <minix/dmap.h> (maybe rename to dev.h?)
2005-08-04 09:26:36 +00:00
Jorrit Herder
fe0dcb5c00 AT driver is not modified (debugging only);
TTY: select and revive with new notify and FS call back;
kernel: removed old notify code; removed ugly prepare_shutdown timer
kputc: don't send to FS if PRINTF_PROC fails
2005-07-27 14:32:16 +00:00
Jorrit Herder
198c976f7e System processes can be signaled; signals are transformed in SYS_EVENT message
that passes signal map along. This mechanisms is also used for nonuser signals
like SIGKMESS, SIGKSTOP, SIGKSIG.

Revised comments of many system call handlers. Renamed setpriority to nice.
2005-07-19 12:21:36 +00:00
Philip Homburg
7d4e914618 Random number generator 2005-07-18 15:40:24 +00:00
Jorrit Herder
42ab148155 Reorganized system call library; uses separate file per call now.
New configuration header file to include/ exclude functionality.
Extracted privileged features from struct proc and create new struct priv.
Renamed various system calls for readability.
2005-07-14 15:12:12 +00:00
Jorrit Herder
bac6068857 Rewrite of process scheduling:
- current and maximum priority per process;
- quantum size and current ticks left per process;
- max number of full quantums in a row allow
  (otherwise current priority is decremented)
2005-06-30 15:55:19 +00:00
Jorrit Herder
a408699ce0 Cleaned up process table structure: removed p_type, p_pendcount.
Removed stop sequence when MINIX is shut down.
Disabled send mask checks --- to be replaced by proper mechanism.
Fixed bug relating to 'shutdown -x'.
Simplified clock accounting of realtime.
Updated Makefiles for mkdept script.
2005-06-24 16:24:40 +00:00
Jorrit Herder
355a10864b Fixed various GCC compiler warnings for the kernel.
Only main() now gives a warning about the return type (GCC wants an int).
2005-06-21 10:47:46 +00:00
Ben Gras
3c7120d830 Changed arguments of timer library functions. 2005-06-17 13:36:01 +00:00
Jorrit Herder
7279bb68ef Applied MINIX 2.0.4 pathes provides by Al Woodhull. 2005-06-17 13:00:04 +00:00
Jorrit Herder
e0a98a4d65 * Fixed bug relating to nested locking in interrupt handlers. The nested lock
caused interrupts to be reenabled (due to unlock), which caused a race. The
problems were especially visible on slower machines.
* Relocated free memory parsing to process manager. This saved quite some
code at the kernel level. Text size was reduced by about 650 bytes.
* Removed locks for updating the realtime in the clock's main loop and the
get_uptime function. Interrupts are no longer reentrant, so realtime is
immediately updated.
2005-06-17 09:09:54 +00:00