To do so, a few dependencies have been imported:
* external/bsd/lutok
* external/mit/lua
* external/public-domain/sqlite
* external/public-domain/xz
The Kyua framework is the new generation of ATF (Automated Test
Framework), it is composed of:
* external/bsd/atf
* external/bsd/kyua-atf-compat
* external/bsd/kyua-cli
* external/bsd/kyua-tester
* tests
Kyua/ATF being written in C++, it depends on libstdc++ which is
provided by GCC. As this is not part of the sources, Kyua is only
compiled when the native GCC utils are installed.
To install Kyua do the following:
* In a cross-build enviromnent, add the following to the build.sh
commandline: -V MKBINUTILS=yes -V MKGCCCMDS=yes
WARNING:
At this point the import is still experimental, and not supported
on native builds (a.k.a make build).
Change-Id: I26aee23c5bbd2d64adcb7c1beb98fe0d479d7ada
-By adding MKGCC=yes and MKGCCCMDS=yes on the make commandline
it is now possible to compile and install GCC on the system.
Before doing this, if you are not using the build.sh script,
you will need to call the fetch scripts in order to retrieve
the sources of GCC and its dependencies.
-Reduce difference with NetBSD share/mk
Move Minix-specific parameters from bsd.gcc.mk to bsd.own.mk,
which is anyway patched, so that bsd.gcc.mk is now aligned
on the NetBSD version.
-Clean libraries dependencies, compiles stdc++ only if gcc is
also compiled (it is part of the gcc sources)
-Correct minix.h header sequence, cleanup spec headers.
-Fix cross-compilation from a 32bit host targeting MINIX/arm
Change-Id: I1b234af18eed4ab5675188244e931b2a2b7bd943
- Enable installing binutils from the base system.
- Import texinfo which is required for the binutils tools
to be compiled.
- Also adapted the fetch rules to correctly generate the
gitignore files for gcc, and allow the case of multiple
modules in the same directory, as found in gnu/dist.
Warning: This patch has an entry in docs/UPDATING
Change-Id: Ib781734e8fd7f9c6265fa65d62ba2cf3fccbc5ba
A few symlinks were pointing to a nonexistent file named '(null)'
instead of their intended target. This was only seen when using the
arm_sdimage.sh script.
There is two ways of specifying links and directories. the first one
using an entry in one of the mtree files, and the second one in
/etc/Makefile.
Those entries where doubled, and one of them would specify some rights,
while the other had the target.
By removing those entries, I make sure there is only one definition of
these symlinks, which solves the problem I was seeing on an ARM image.
These symlinks are still present on a generated system, as they are
required.
Change-Id: I9ced8860f72d7c4d686a09720de4d8257d6e04fa
Install /home/ast and /home/bin as part of the system build procedure,
as the setup script is not ran on the arm image.
/home/bin is needed for successful completion of our test suite.
This patch does not change the setup script, as it is not bothered by
those files/directiories being already there, and may be useful during
reinstallation on intel systems.
Change-Id: I358c881df09223c343442673aa0822937f9ea33c
LSC: Small correction, using the group name is not secure in cross-build
setups, replaced by the numerical gid to ensure proper operation.
Change-Id: I7657b77f29eaa513fe24d8c4e2eb6de9afd53950
With the build system upgrade, the list of system directories was
recreated, and the sticky bit was forgotten.
Change-Id: Ie2f2241734dde9f1e217cd38588296dc21d07b81
The tested targets are the followgin ones:
* tools
* distribution
* sets
* release
The remaining NetBSD targets have not been disabled nor tested
*at all*. Try them at your own risk, they may reboot the earth.
For all compliant Makefiles, objects and generated files are put in
MAKEOBJDIR, which means you can now keep objects between two branch
switching. Same for DESTDIR, please refer to build.sh options.
Regarding new or modifications of Makefiles a few things:
* Read share/mk/bsd.README
* If you add a subdirectory, add a Makefile in it, and have it called
by the parent through the SUBDIR variable.
* Do not add arbitrary inclusion which crosses to another branch of
the hierarchy; If you can't do without it, put a comment on why.
If possible, do not use inclusion at all.
* Use as much as possible the infrastructure, it is here to make
life easier, do not fight it.
Sets and package are now used to track files.
We have one set called "minix", composed of one package called "minix-sys"
Bumping libc files for unsupported architectures, to simplify merging.
A bunch of small fixes:
* in libutil update
* the macro in endian.h
* some undefined types due to clear separation from host.
* Fix a warning for cdbr.c
Some modification which were required for the new build system:
* inclusion path for const.h in sconst, still hacky
* Removed default malloc.c which conflicts on some occasions.
building defaults to off until clang is updated.
current clang does not handle -shared, necessary to change the ld
invocation to build shared libraries properly. a new clang should be
installed and MKPIC defaults to no unless the newer clang is detected.
changes:
. mainly small imports of a Makefile or two and small fixes
(turning things back on that were turned off in Makefiles)
. e.g.: dynamic librefuse now depends on dynamic
libpuffs, so libpuffs has to be built dynamically too
and a make dependency barrier is needed in lib/Makefile
. all library objects now have a PIC (for .so) and non-PIC
version, so everything is built twice.
. generate PIC versions of the compat (un-RENAMEd) jump files,
include function type annotation in generated assembly
. build progs with -static by default for now
. also build ld.elf_so
. also import NetBSD ldd
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.
Changes in this commit:
. drop boot monitor -> allowing dropping ack support
. facility to copy ELF boot files to /boot so that old boot monitor
can still boot fairly easily, see UPDATING
. no more ack-format libraries -> single-case libraries
. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
. drop several ack toolchain commands, but not all support
commands (e.g. aal is gone but acksize is not yet).
. a few libc files moved to netbsd libc dir
. new /bin/date as minix date used code in libc/
. test compile fix
. harmonize includes
. /usr/lib is no longer special: without ack, /usr/lib plays no
kind of special bootstrapping role any more and bootstrapping
is done exclusively through packages, so releases depend even
less on the state of the machine making them now.
. rename nbsd_lib* to lib*
. reduce mtree
Kernels and system services are stored in a single directory in the
/boot/minix/ and rotated like /boot/images. /boot/minix_latest slink
is created automatically.
System serives are prefixed by "modNN_" to allow to easily load them
using "mod*" pattern.
. rc script and service know to look in /usr/pkg/.. for
extra binaries and conf files
. service split into parsing config and doing RS request
so that a new utility (printconfig) can just print the
config in machine-parseable format for netconf integration
. converted all base system eth drivers/netconf
1. ack, a.out, minix headers (moved to /usr/include.ack),
minix libc
2. gcc/clang, elf, netbsd headers (moved to /usr/include),
netbsd libc (moved to /usr/lib)
So this obsoletes the /usr/netbsd hierarchy.
No special invocation for netbsd libc necessary - it's always used
for gcc/clang.
This makes it easier to
- have non-base system drivers (get clobbered by global system.conf)
- have drivers as packages (can't touch global system.conf)
- make configs part of the drivers/servers instead of in global file
(makes system parts more self-contained)
-Convert the include directory over to using bsdmake
syntax
-Update/add mkfiles
-Modify install(1) so that it can create symlinks
-Update makefiles to use new install(1) options
-Rename /usr/include/ibm to /usr/include/i386
-Create /usr/include/machine symlink to arch header files
-Move vm_i386.h to its new home in the /usr/include/i386
-Update source files to #include the header files at their
new homes.
-Add new gnu-includes target for building GCC headers