- the userland call is now made to PM only, and PM relays the call to
other servers as appropriate; this is an ABI change that will
ultimately allow us to add proper support for wait3() and the like;
for the moment there is backward compatibility;
- the getrusage-specific kernel subcall has been removed, as it
provided only redundant functionality, and did not provide the means
to be extended correctly in the future - namely, allowing the kernel
to return different values depending on whether resource usage of
the caller (self) or its children was requested;
- VM is now told whether resource usage of the caller (self) or its
children is requested, and it refrains from filling in wrong values
for information it does not have;
- VM now uses the correct unit for the ru_maxrss values;
- VFS is cut out of the loop entirely, since it does not provide any
values at the moment; a comment explains how it should be readded.
Change-Id: I27b0f488437dec3d8e784721c67b03f2f853120f
The current value was both wrong (counting spawned kernel signals
rather than delivered user signals) and returned for the calling
process even if the request was for the process's children.
For now we are better off not populating this field at all.
Change-Id: I6c660be266b5746b7c3db57ae88fa7f872961ee2
The current values were both inaccurate (especially for dynamically
linked executables) and using the wrong unit (bytes, instead of
kilobytes times ticks-of-execution). For now we are better off not
populating these fields at all.
Change-Id: I195a8fa8db909e64a833eec25f59c9ee0b89bdc5
POSIX states that times() and getrusage() should only return child
user and system times of terminated children for which wait*() has
returned their PIDs.
Change-Id: I38e19ad71543a3b91e944bef8e4e1bd903de51bf
- move MINIX3-specific files into minix/lib/libpuffs;
- resynchronize the remaining files with NetBSD code;
- remove a few unnecessary changes;
- put remaining MINIX3-specific changes in __minix blocks;
- sort out the source files being linked at all.
The result is that libpuffs now successfully links against FUSE
file system programs again. It can successfully mount, perform
some of the most basic operations, and unmount the file system.
Change-Id: Ieac220f7ad8c4d1fa293abda81967e8045be0bb4
- no longer inject fewer faults than instructed;
- no longer apply a limit on the number of injected faults;
- refactory to allow for random faults (type 99);
- also allow for stop faults (type 50);
- massive dead code cleanup;
- move outdated test cruft into tests/ subdirectory; it is kept only
as an example of how to use swifi.
Change-Id: I8a3cb71902dfaadb7bf785723b917307db83d0d5
At the very least, these can be used to test for the existence of
files not normally accessible by unprivileged users.
Change-Id: I054cf6d033a1604bbbc871db37103a67067abe84
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: I1206b52e8804a68a3a80f6d7f63916e7fcdc9e3f
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: Iccb4a8b27ae220254bae19e9198478b40706f542
- move from minix/commands to minix/usr.sbin;
- install into /usr/sbin instead of /usr/bin;
- move manual page into source directory;
- resolve compilation warning;
- convert to KNF.
Change-Id: I08c16998bd499a468799a6587f6fe45f42590461
Various generic file IOCTL calls should be processed by VFS rather
than individual drivers. For this reason, we rewrite them to use
fcntl(2) instead.
Change-Id: I38a5f3c7b21943a897114a51678a800f7e7f0a77
Currently, the userland ABI uses a single field ('user_sp') far
into the very large 'kinfo' structure on the shared kernel
information page. This precludes us from modifying or getting
rid of 'kinfo' in the future without breaking userland. This
patch adds a separate 'kuserinfo' structure to the kernel
information page, with only information that is part of the
userland ABI, in an extensible manner. Userland now uses this
field if it is present, and falls back to the old field if not.
Change-Id: Ib7b24b53a440f40a2edc28cdfa48447ac2179288
This change serves to reduce the clutter inside the top-level kerninfo
structure, and allows other ARM-specific values to be added on the
kernel page in one place.
Change-Id: I36a6aada9dbd1230b25014728be675d389088667
Please note that this information is for use by system services only!
The clock facility is not ready to be used directly by userland, and
thus, this kernel page extension is NOT part of the userland ABI.
For service programmers' convenience, change the prototype of the
getticks(3) to return the uptime clock value directly, since the call
can no longer fail.
Correct the sys_times(2) reply message to use the right field type
for the boot time.
Restructure the kernel internals a bit so as to have all the clock
stuff closer together.
Change-Id: Ifc050b7bd253aecbe46e3bd7d7cc75bd86e45555
Instead of importing an external _minix_kerninfo variable, any code
using the shared kernel page should now call get_minix_kerninfo(3).
Since this is the only logical name for such a function, rename the
previous get_minix_kerninfo call to ipc_minix_kerninfo.
Change-Id: I2e424b6fb55aa55d3da850187f1f7a0b7cbbf910
This commits adds a basic infrastructure to support Address Space
Randomization (ASR). In a nutshell, using the already imported ASR
LLVM pass, multiple versions can be generated for the same system
service, each with a randomized, different address space layout.
Combined with the magic instrumentation for state transfer, a system
service can be live updated into another ASR-randomized version at
runtime, thus providing live rerandomization.
Since MINIX3 is not yet capable of running LLVM linker passes, the
ASR-randomized service binaries have to be pregenerated during
crosscompilation. These pregenerated binaries can then be cycled
through at runtime. This patch provides the basic proof-of-concept
infrastructure for both these parts.
In order to support pregeneration, the clientctl host script has
been extended with a "buildasr" command. It is to be used after
building the entire system with bitcode and magic support, and will
produce a given number of ASR-randomized versions of all system
services. These services are placed in /usr/service/asr in the
image that is generated as final step by the "buildasr" command.
In order to support runtime updating, a new update_asr(8) command
has been added to MINIX3. This command attempts to live-update the
running system services into their next ASR-randomized versions.
For now, this command is not run automatically, and thus must be
invoked manually.
Technical notes:
- For various reasons, magic instrumentation is x86-only for now,
and ASR functionality is therefore to be used on x86 only as well.
- The ASR-randomized binaries are placed in numbered subdirectories
so as not to have to change their actual program names, which are
assumed to be static in various places (system.conf, procfs).
- The root partition is typically too small to contain all the
produced binaries, which is why we introduce /usr/service. There
is a symlink from /service/asr to /usr/service/asr for no other
reason than to let userland continue to assume that all services
are reachable through /service.
- The ASR count field (r_asr_count/ASRcount) maintained by RS is not
used within RS in any way; it is only passed through procfs to
userland in order to allow update_asr(8) to keep track of which
version is currently loaded without having to maintain own state.
- Ideally, pre-instrumentation linking of a service would remove all
its randomized versions. Currently, the user is assumed not to
perform ASR instrumentation and then recompile system services
without performing ASR instrumentation again, as the randomized
binaries included in the image would then be stale. This aspect
has to be improved later.
- Various other issues are flagged in the comments of the various
parts of this patch.
Change-Id: I093ad57f31c18305591f64b2d491272288aa0937
The code could not decide whether to apply the padding to the start
or the end of the region, resulting in strange behavior because part
of the returned range might not have the right properties. With this
patch, padding is now consistently applied at the end of the region,
since virtual mmap addresses are allocated from high to low.
Also fix a few small related bugs in error handling code.
Change-Id: I327814bb3921d7982ffc1296a5bf365d9c79c1d9
Lack of alignment causes minix_stack_fill to produce an incorrect
frame layout, subsequently resulting in a crash of the started
process. For now, we assume that the other callers of
minix_stack_fill do get an aligned buffer through sbrk(3), but this
may have to be changed later as well.
Change-Id: I1575bd62b050749d1a1aae7417310c91713462c3
The libexec ELF parser expects to be given a word-aligned buffer,
but the ASR pass may cause VM and VFS to pass it an arbitrarily
aligned buffer, causing libexec to refuse loading the executable.
This patch aligns the buffers explicitly.
Change-Id: Ic2d5fd3a8f204c3e4f000cffdb7ac71c8339257a
- do not allow live update for request and protocol free states if
there are any worker threads that have pending or active work;
- destroy all worker threads before such live updates and recreate
them afterwards, because transferring (the contents of) the
thread stacks is not an option at this time;
- recreate worker threads in the new instance only if they were
shut down before the state transfer, by letting RS provide the
original preparation state as initialization information.
Change-Id: I846225f5b7281f19e69175485f2c88a4b4891dc2
The bitcode file given to the instrumentation pass does not include
certain weak symbols, in particular regcomp and regfree, which are
required to be visible to the magic pass for state transfer to work
correctly. This patch forces DS to make the calls using their actual
symbol names (with leading underscore), thus resolving the issue, but
this issue should really be solved in a cleaner and more generic way.
Change-Id: Iebee4341cc30ddabcf7593afb5c49d41c0839863
This patch is a first step towards working around the larger problem of
LLVM 3.x's use of bitcasting between structures and their elements to
deal with opaque types, replacing LLVM 2.x's actual unification. The
patch allows the pass to register a larger number of compatible types,
in particular for structure pointers passed through function calls.
A skeleton is provided for dealing with structure elements as well, but
that part requires much more work. It remains to be seen whether a
more structural approach to dealing with this problem may be warranted.
For now, this change is necessary to allow instrumented state transfer
of various "minix_timer" structures and pointers in PM and VFS.
Change-Id: Ib717d86ccfced53387e72a92750d22ae980c3466
Due to the current linker command line ordering, parts of lib(min)c
that are used exclusively by libmagic end up not being instrumented,
which then causes problems transferring pointers such as _ctype_tab_
and _tolower_tab_. As a temporary workaround, we redefine the macros
that use those pointers. A better long-term solution should
eventually render this patch obsolete.
Change-Id: Ice1d125ff6fb2f65ac6dcc6cf6eec7cd6176bee1
- test multicomponent live update with and without rs and/or vm;
- retry the update a few times if the failure code suggests it might
be a transient failure.
Change-Id: I5fce256bb418be257353ed21428f672d851d974d
That way, these pages are transferred during live update, as they
should. This resolves a mfs crash after a number of live updates.
Change-Id: Ia53bec2692b2114c29b96a453beb0f915f56453a