Commit graph

85 commits

Author SHA1 Message Date
Kees van Reeuwijk 1ba0936619 Fix some uses of uninitialized variables. 2010-02-19 10:41:02 +00:00
Kees van Reeuwijk 97c169b93a Remove some unused #include.
Remove some unused variables and computations on them.
2010-02-17 20:24:42 +00:00
Kees van Reeuwijk df60646f98 Undo the use of #include <...> because it caused some errors. 2010-02-12 14:43:18 +00:00
Tomas Hruby c6fec6866f No locking in kernel code
- No locking in RTS_(UN)SET macros

- No lock_notify()

- Removed unused lock_send()

- No lock/unlock macros anymore
2010-02-09 15:26:58 +00:00
Tomas Hruby 391fd926ff TASK_PRIVILEGE and level0() removed
- there are no tasks running, we don't need TASK_PRIVILEGE priviledge anymore

- as there is no ring 1 anymore, there is no need for level0() to call sensitive
  code from ring 1 in ring 0

- 286 related macros removed as clean up
2010-02-09 15:23:31 +00:00
Tomas Hruby cca24d06d8 This patch removes the global variables who_p and who_e from the
kernel (sys task).  The main reason is that these would have to become
cpu local variables on SMP.  Once the system task is not a task but a
genuine part of the kernel there is even less reason to have these
extra variables as proc_ptr will already contain all neccessary
information. In addition converting who_e to the process pointer and
back again all the time will be avoided.

Although proc_ptr will contain all important information, accessing it
as a cpu local variable will be fairly expensive, hence the value
would be assigned to some on stack local variable. Therefore it is
better to add the 'caller' argument to the syscall handlers to pass
the value on stack anyway. It also clearly denotes on who's behalf is
the syscall being executed.

This patch also ANSIfies the syscall function headers.

Last but not least, it also fixes a potential bug in virtual_copy_f()
in case the check is disabled. So far the function in case of a
failure could possible reuse an old who_p in case this function had
not been called from the system task.

virtual_copy_f() takes the caller as a parameter too. In case the
checking is disabled, the caller must be NULL and non NULL if it is
enabled as we must be able to suspend the caller.
2010-02-03 09:04:48 +00:00
Kees van Reeuwijk 477b616fe8 Fixed a number of complaints about missing return statements.
Some cases were fixed by declaring the function void, others were fixed
by adding a return <value> statement, thereby avoiding potentially
incorrect behavior (usually in error handling).
Some enum correctness in boot.c.
2010-01-28 13:17:07 +00:00
Kees van Reeuwijk c8a11b5453 Fixed some type inconsistencies in the kernel. 2010-01-26 12:26:06 +00:00
Kees van Reeuwijk a701e290f7 Removed unused symbols.
Made some functions PRIVATE, including ones that aren't used anywhere.
2010-01-25 18:13:48 +00:00
Kees van Reeuwijk a7cee5bec4 Removed unused symbols.
Minor cleanups.
2010-01-22 22:01:08 +00:00
Kees van Reeuwijk d6383bef47 Removed some unused tests. 2010-01-20 17:55:14 +00:00
Tomas Hruby 5efa92f754 NMI watchdog is an awesome feature for debugging locked up kernels.
There is not that much use for it on a single CPU, however, deadlock
between kernel and system task can be delected. Or a runaway loop.

If a kernel gets locked up the timer interrupts don't occure (as all
interrupts are disabled in kernel mode). The only chance is to
interrupt the kernel by a non-maskable interrupt.

This patch generates NMIs using performance counters. It uses the most
widely available performace counters. As the performance counters are 
highly model-specific this patch is not guaranteed to work on every
machine.  Unfortunately this is also true for KVM :-/ On the other
hand adding this feature for other models is not extremely difficult
and the framework makes it hopefully easy enough.

Depending on the frequency of the CPU an NMI is generated at most
about every 0.5s If the cpu's speed is less then 2Ghz it is generated
at most every 1s. In general an NMI is generated much less often as
the performance counter counts down only if the cpu is not idle.
Therefore the overhead of this feature is fairly minimal even if the
load is high.

Uppon detecting that the kernel is locked up the kernel dumps the 
state of the kernel registers and panics.

Local APIC must be enabled for the watchdog to work.

The code is _always_ compiled in, however, it is only enabled if  
watchdog=<non-zero> is set in the boot monitor.

One corner case is serial console debugging. As dumping a lot of stuff
to the serial link may take a lot of time, the watchdog does not 
detect lockups during this time!!! as it would result in too many
false positives. 10 nmi have to be handled before the lockup is
detected. This means something between ~5s to 10s.

Another corner case is that the watchdog is enabled only after the
paging is enabled as it would be pure madness to try to get it right.
2010-01-16 20:53:55 +00:00
Cristiano Giuffrida c5b309ff07 Merge of Wu's GSOC 09 branch (src.20090525.r4372.wu)
Main changes:
- COW optimization for safecopy.
- safemap, a grant-based interface for sharing memory regions between processes.
- Integration with safemap and complete rework of DS, supporting new data types
  natively (labels, memory ranges, memory mapped ranges).
- For further information:
  http://wiki.minix3.org/en/SummerOfCode2009/MemoryGrants

Additional changes not included in the original Wu's branch:
- Fixed unhandled case in VM when using COW optimization for safecopy in case
  of a block that has already been shared as SMAP.
- Better interface and naming scheme for sys_saferevmap and ds_retrieve_map
  calls.
- Better input checking in syslib: check for page alignment when creating
  memory mapping grants.
- DS notifies subscribers when an entry is deleted.
- Documented the behavior of indirect grants in case of memory mapping.
- Test suite in /usr/src/test/safeperf|safecopy|safemap|ds/* reworked
  and extended.
- Minor fixes and general cleanup.
- TO-DO: Grant ids should be generated and managed the way endpoints are to make
sure grant slots are never misreused.
2010-01-14 15:24:16 +00:00
Kees van Reeuwijk d8f3af3672 Fixed a typing bug.
More explicit type conversion from virual to physical bytes.
Bracket negative #defines for extra paranoia.
Added a forgotten 'void' to a function.
2010-01-06 08:23:14 +00:00
David van Moolenbroek ac9a5829a2 suppress kernel/VM memory debugging information 2009-12-29 21:35:12 +00:00
David van Moolenbroek e423c86009 ptrace(2) modifications:
- add T_GETRANGE/T_SETRANGE to get/set ranges of values
- change EIO error code to EFAULT
- move common-I&D text-to-data translation to umap_local
2009-12-29 21:32:15 +00:00
David van Moolenbroek fce9fd4b4e Add 'getidle' CPU utilization measurement infrastructure 2009-12-02 11:52:26 +00:00
Tomas Hruby 8a44a44cb9 Local APIC
- local APIC timer used as the source of time

- PIC is still used as the hw interrupt controller as we don't have
  enough info without ACPI or MPS to set up IO APICs

- remapping of APIC when switching paging on, uses the new mechanism
  to tell VM what phys areas to map in kernel's virtual space

- one more step to SMP

based on code by Arun C.
2009-11-16 21:41:44 +00:00
Tomas Hruby 37a7e1b76b Use of isemptyp() macro instead of testing RTS_SLOT_FREE flag
- some code used to test if only this flag is set, some if also this flag is
  set. This change unifies the test
2009-11-12 08:35:26 +00:00
Tomas Hruby b3b0a18403 allow kernel to tell VM extra physical addresses it wants mapped in.
used in the future for mapping in local APIC memory.
2009-11-11 12:07:06 +00:00
Tomas Hruby a972f4bacc All macros defining rts flags are prefixed with RTS_
- macros used with RTS_SET group of macros to define struct proc p_rts_flags are
  now prefixed with RTS_ to make things clear
2009-11-10 09:11:13 +00:00
Tomas Hruby ebbce7507b Complete ovehaul of mode switching code
- after a trap to kernel, the code automatically switches to kernel
  stack, in the future local to the CPU

- k_reenter variable replaced by a test whether the CS is kernel cs or
  not. The information is passed further if needed. Removes a global
  variable which would need to be cpu local

- no need for global variables describing the exception or trap
  context. This information is kept on stack and a pointer to this
  structure is passed to the C code as a single structure

- removed loadedcr3 variable and its use replaced by reading the %cr3
  register

- no need to redisable interrupts in restart() as they are already
  disabled.

- unified handling of traps that push and don't push errorcode

- removed save() function as the process context is not saved directly
  to process table but saved as required by the trap code. Essentially
  it means that save() code is inlined everywhere not only in the
  exception handling routine

- returning from syscall is more arch independent - it sets the retger
  in C

- top of the x86 stack contains the current CPU id and pointer to the
  currently scheduled process (the one right interrupted) so the mode
  switch code can find where to save the context without need to use
  proc_ptr which will be cpu local in the future and therefore
  difficult to access in assembler and expensive to access in general

- some more clean up of level0 code. No need to read-back the argument
  passed in
  %eax from the proc structure. The mode switch code does not clobber
  %the general registers and hence we can just call what is in %eax

- many assebly macros in sconst.h as they will be reused by the apic
  assembly
2009-11-06 09:08:26 +00:00
Ben Gras 24e1e83028 really revert endpoint_t -> int
debugging info on panic: decode segment selectors and descriptors, now moved
to arch-specific part, prototypes added; sanity checking in debug.h made
optional with vmassert().
2009-10-05 15:47:23 +00:00
Ben Gras 30804b9ed7 thanks to tomas: fix for level0() race condition - global variable can
be used concurrently.  pass the function in eax instead; this gets rid
of the global variable.  also execute the function directly if we're
already trapped into the kernel.

revert of u32_t endpoint_t to int (some code assumes endpoints are
negative for negative slot numbers).
2009-10-05 15:22:31 +00:00
Ben Gras bcd7d04203 throw out FIXME reminders for release 2009-09-30 07:40:34 +00:00
Ben Gras da67a3af00 disable 'clever' optimisation (workaround for vmware(?) problem) 2009-09-28 15:47:01 +00:00
Ben Gras c2324398f4 sha1 unused now. 2009-09-21 20:32:53 +00:00
Ben Gras cd8b915ed9 Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
    on every kernel entry (trap, interrupt, exception). the primary
    purpose is to reduce the number of required reloads.
Result:
  - kernel can only access memory of process that was running when
    kernel was entered
  - kernel must be mapped into every process page table, so traps to
    kernel keep working
Problem:
  - kernel must often access memory of arbitrary processes (e.g. send
    arbitrary processes messages); this can't happen directly any more;
    usually because that process' page table isn't loaded at all, sometimes
    because that memory isn't mapped in at all, sometimes because it isn't
    mapped in read-write.
So:
  - kernel must be able to map in memory of any process, in its own
    address space.
Implementation:
  - VM and kernel share a range of memory in which addresses of
    all page tables of all processes are available. This has two purposes:
      . Kernel has to know what data to copy in order to map in a range
      . Kernel has to know where to write the data in order to map it in
    That last point is because kernel has to write in the currently loaded
    page table.
  - Processes and kernel are separated through segments; kernel segments
    haven't changed.
  - The kernel keeps the process whose page table is currently loaded
    in 'ptproc.'
  - If it wants to map in a range of memory, it writes the value of the
    page directory entry for that range into the page directory entry
    in the currently loaded map. There is a slot reserved for such
    purposes. The kernel can then access this memory directly.
  - In order to do this, its segment has been increased (and the
    segments of processes start where it ends).
  - In the pagefault handler, detect if the kernel is doing
    'trappable' memory access (i.e. a pagefault isn't a fatal
     error) and if so,
       - set the saved instruction pointer to phys_copy_fault,
	 breaking out of phys_copy
       - set the saved eax register to the address of the page
	 fault, both for sanity checking and for checking in
	 which of the two ranges that phys_copy was called
	 with the fault occured
  - Some boot-time processes do not have their own page table,
    and are mapped in with the kernel, and separated with
    segments. The kernel detects this using HASPT. If such a
    process has to be scheduled, any page table will work and
    no page table switch is done.

Major changes in kernel are
  - When accessing user processes memory, kernel no longer
    explicitly checks before it does so if that memory is OK.
    It simply makes the mapping (if necessary), tries to do the
    operation, and traps the pagefault if that memory isn't present;
    if that happens, the copy function returns EFAULT.
    So all of the CHECKRANGE_OR_SUSPEND macros are gone.
  - Kernel no longer has to copy/read and parse page tables.
  - A message copying optimisation: when messages are copied, and
    the recipient isn't mapped in, they are copied into a buffer
    in the kernel. This is done in QueueMess. The next time
    the recipient is scheduled, this message is copied into
    its memory. This happens in schedcheck().
    This eliminates the mapping/copying step for messages, and makes
    it easier to deliver messages. This eliminates soft_notify.
  - Kernel no longer creates a page table at all, so the vm_setbuf
    and pagetable writing in memory.c is gone.

Minor changes in kernel are
  - ipc_stats thrown out, wasn't used
  - misc flags all renamed to MF_*
  - NOREC_* macros to enter and leave functions that should not
    be called recursively; just sanity checks really
  - code to fully decode segment selectors and descriptors
    to print on exceptions
  - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 14:31:52 +00:00
Ben Gras bdab3c4cfb Library call for cpu features; make kernel and vm use this to query cpu
features (specifically: 4MB pages and TLB global bit).  Only enable
these features in CR4 if available. 4MB pages to be used in the near
future.
2009-05-15 17:07:36 +00:00
Ben Gras e3ca89c0be more sanity checking. sanity checking disabled by default.
give every process a full pagetable by default now.

first step to disabling kernel page table code (processes
might not have page tables -> no address translation).
2009-05-12 11:35:01 +00:00
Ben Gras bb23344283 spurious debug 2009-04-27 16:11:38 +00:00
Ben Gras ef8a741301 set global flag for kernel pages, so tlb entries for kernel aren't thrown
away on cr3 reload. minor optimization.
2009-04-23 15:11:16 +00:00
Ben Gras f0000078c3 make kernel leave a page-sized gap in its code and data to not be
mapped in if so configured.
2008-12-18 14:30:55 +00:00
Ben Gras c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00
Ben Gras 6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00