minix/kernel/arch/i386/memory.c
2009-09-30 07:40:34 +00:00

1035 lines
27 KiB
C

#include "../../kernel.h"
#include "../../proc.h"
#include "../../vm.h"
#include <minix/type.h>
#include <minix/syslib.h>
#include <minix/sysutil.h>
#include <minix/cpufeature.h>
#include <string.h>
#include <sys/vm_i386.h>
#include <minix/portio.h>
#include "proto.h"
#include "../../proto.h"
#include "../../proto.h"
#include "../../debug.h"
PRIVATE int psok = 0;
#define PROCPDEPTR(pr, pi) ((u32_t *) ((u8_t *) vm_pagedirs +\
I386_PAGE_SIZE * pr->p_nr + \
I386_VM_PT_ENT_SIZE * pi))
u8_t *vm_pagedirs = NULL;
#define NOPDE -1
#define PDEMASK(n) (1L << (n))
PUBLIC u32_t dirtypde;
#define WANT_FREEPDES (sizeof(dirtypde)*8-5)
PRIVATE int nfreepdes = 0, freepdes[WANT_FREEPDES], inusepde = NOPDE;
#define HASPT(procptr) ((procptr)->p_seg.p_cr3 != 0)
FORWARD _PROTOTYPE( u32_t phys_get32, (vir_bytes v) );
FORWARD _PROTOTYPE( void set_cr3, (void) );
FORWARD _PROTOTYPE( void vm_enable_paging, (void) );
/* *** Internal VM Functions *** */
PUBLIC void vm_init(struct proc *newptproc)
{
int i;
if(vm_running)
minix_panic("vm_init: vm_running", NO_NUM);
vm_set_cr3(newptproc);
level0(vm_enable_paging);
vm_running = 1;
}
#define TYPEDIRECT 0
#define TYPEPROCMAP 1
#define TYPEPHYS 2
/* This macro sets up a mapping from within the kernel's address
* space to any other area of memory, either straight physical
* memory (PROC == NULL) or a process view of memory, in 4MB chunks.
* It recognizes PROC having kernel address space as a special case.
*
* It sets PTR to the pointer within kernel address space at the start
* of the 4MB chunk, and OFFSET to the offset within that chunk
* that corresponds to LINADDR.
*
* It needs FREEPDE (available and addressable PDE within kernel
* address space), SEG (hardware segment), VIRT (in-datasegment
* address if known).
*/
#define CREATEPDE(PROC, PTR, LINADDR, REMAIN, BYTES, PDE, TYPE) { \
u32_t *pdeptr = NULL; \
int proc_pde_index; \
proc_pde_index = I386_VM_PDE(LINADDR); \
PDE = NOPDE; \
if((PROC) && (((PROC) == ptproc) || !HASPT(PROC))) { \
PTR = LINADDR; \
TYPE = TYPEDIRECT; \
} else { \
int fp; \
int mustinvl; \
u32_t pdeval, *pdevalptr, mask; \
phys_bytes offset; \
vmassert(psok); \
if(PROC) { \
TYPE = TYPEPROCMAP; \
vmassert(!iskernelp(PROC)); \
vmassert(HASPT(PROC)); \
pdeptr = PROCPDEPTR(PROC, proc_pde_index); \
pdeval = *pdeptr; \
} else { \
TYPE = TYPEPHYS; \
pdeval = (LINADDR & I386_VM_ADDR_MASK_4MB) | \
I386_VM_BIGPAGE | I386_VM_PRESENT | \
I386_VM_WRITE | I386_VM_USER; \
} \
for(fp = 0; fp < nfreepdes; fp++) { \
int k = freepdes[fp]; \
if(inusepde == k) \
continue; \
*PROCPDEPTR(ptproc, k) = 0; \
PDE = k; \
vmassert(k >= 0); \
vmassert(k < sizeof(dirtypde)*8); \
mask = PDEMASK(PDE); \
if(dirtypde & mask) \
continue; \
break; \
} \
vmassert(PDE != NOPDE); \
vmassert(mask); \
if(dirtypde & mask) { \
mustinvl = 1; \
} else { \
mustinvl = 0; \
} \
inusepde = PDE; \
*PROCPDEPTR(ptproc, PDE) = pdeval; \
offset = LINADDR & I386_VM_OFFSET_MASK_4MB; \
PTR = I386_BIG_PAGE_SIZE*PDE + offset; \
REMAIN = MIN(REMAIN, I386_BIG_PAGE_SIZE - offset); \
if(1 || mustinvl) { \
level0(reload_cr3); \
} \
} \
}
#define DONEPDE(PDE) { \
if(PDE != NOPDE) { \
vmassert(PDE > 0); \
vmassert(PDE < sizeof(dirtypde)*8); \
dirtypde |= PDEMASK(PDE); \
} \
}
#define WIPEPDE(PDE) { \
if(PDE != NOPDE) { \
vmassert(PDE > 0); \
vmassert(PDE < sizeof(dirtypde)*8); \
*PROCPDEPTR(ptproc, PDE) = 0; \
} \
}
/*===========================================================================*
* lin_lin_copy *
*===========================================================================*/
int lin_lin_copy(struct proc *srcproc, vir_bytes srclinaddr,
struct proc *dstproc, vir_bytes dstlinaddr, vir_bytes bytes)
{
u32_t addr;
int o1, o2;
int procslot;
int firstloop = 1;
NOREC_ENTER(linlincopy);
vmassert(vm_running);
vmassert(nfreepdes >= 3);
vmassert(ptproc);
vmassert(proc_ptr);
vmassert(read_cr3() == ptproc->p_seg.p_cr3);
procslot = ptproc->p_nr;
vmassert(procslot >= 0 && procslot < I386_VM_DIR_ENTRIES);
while(bytes > 0) {
phys_bytes srcptr, dstptr;
vir_bytes chunk = bytes;
int srcpde, dstpde;
int srctype, dsttype;
/* Set up 4MB ranges. */
inusepde = NOPDE;
CREATEPDE(srcproc, srcptr, srclinaddr, chunk, bytes, srcpde, srctype);
CREATEPDE(dstproc, dstptr, dstlinaddr, chunk, bytes, dstpde, dsttype);
/* Copy pages. */
PHYS_COPY_CATCH(srcptr, dstptr, chunk, addr);
DONEPDE(srcpde);
DONEPDE(dstpde);
if(addr) {
/* If addr is nonzero, a page fault was caught. */
if(addr >= srcptr && addr < (srcptr + chunk)) {
WIPEPDE(srcpde);
WIPEPDE(dstpde);
NOREC_RETURN(linlincopy, EFAULT_SRC);
}
if(addr >= dstptr && addr < (dstptr + chunk)) {
WIPEPDE(srcpde);
WIPEPDE(dstpde);
NOREC_RETURN(linlincopy, EFAULT_DST);
}
minix_panic("lin_lin_copy fault out of range", NO_NUM);
/* Not reached. */
NOREC_RETURN(linlincopy, EFAULT);
}
WIPEPDE(srcpde);
WIPEPDE(dstpde);
/* Update counter and addresses for next iteration, if any. */
bytes -= chunk;
srclinaddr += chunk;
dstlinaddr += chunk;
firstloop = 0;
}
NOREC_RETURN(linlincopy, OK);
}
PRIVATE u32_t phys_get32(addr)
phys_bytes addr;
{
u32_t v;
int r;
if(!vm_running) {
phys_copy(addr, vir2phys(&v), sizeof(v));
return v;
}
if((r=lin_lin_copy(NULL, addr,
proc_addr(SYSTEM), vir2phys(&v), sizeof(v))) != OK) {
minix_panic("lin_lin_copy for phys_get32 failed", r);
}
return v;
}
PRIVATE u32_t vm_cr3; /* temp arg to level0() func */
PUBLIC void vm_set_cr3(struct proc *newptproc)
{
int u = 0;
if(!intr_disabled()) { lock; u = 1; }
vm_cr3= newptproc->p_seg.p_cr3;
if(vm_cr3) {
vmassert(intr_disabled());
level0(set_cr3);
vmassert(intr_disabled());
ptproc = newptproc;
vmassert(intr_disabled());
}
if(u) { unlock; }
}
PRIVATE void set_cr3()
{
write_cr3(vm_cr3);
}
char *cr0_str(u32_t e)
{
static char str[80];
strcpy(str, "");
#define FLAG(v) do { if(e & (v)) { strcat(str, #v " "); e &= ~v; } } while(0)
FLAG(I386_CR0_PE);
FLAG(I386_CR0_MP);
FLAG(I386_CR0_EM);
FLAG(I386_CR0_TS);
FLAG(I386_CR0_ET);
FLAG(I386_CR0_PG);
FLAG(I386_CR0_WP);
if(e) { strcat(str, " (++)"); }
return str;
}
char *cr4_str(u32_t e)
{
static char str[80];
strcpy(str, "");
FLAG(I386_CR4_VME);
FLAG(I386_CR4_PVI);
FLAG(I386_CR4_TSD);
FLAG(I386_CR4_DE);
FLAG(I386_CR4_PSE);
FLAG(I386_CR4_PAE);
FLAG(I386_CR4_MCE);
FLAG(I386_CR4_PGE);
if(e) { strcat(str, " (++)"); }
return str;
}
PRIVATE void vm_enable_paging(void)
{
u32_t cr0, cr4;
int pgeok;
psok = _cpufeature(_CPUF_I386_PSE);
pgeok = _cpufeature(_CPUF_I386_PGE);
cr0= read_cr0();
cr4= read_cr4();
/* First clear PG and PGE flag, as PGE must be enabled after PG. */
write_cr0(cr0 & ~I386_CR0_PG);
write_cr4(cr4 & ~(I386_CR4_PGE | I386_CR4_PSE));
cr0= read_cr0();
cr4= read_cr4();
/* Our first page table contains 4MB entries. */
if(psok)
cr4 |= I386_CR4_PSE;
write_cr4(cr4);
/* First enable paging, then enable global page flag. */
cr0 |= I386_CR0_PG;
write_cr0(cr0 );
cr0 |= I386_CR0_WP;
write_cr0(cr0);
/* May we enable these features? */
if(pgeok)
cr4 |= I386_CR4_PGE;
write_cr4(cr4);
}
PUBLIC vir_bytes alloc_remote_segment(u32_t *selector,
segframe_t *segments, int index, phys_bytes phys, vir_bytes size,
int priv)
{
phys_bytes offset = 0;
/* Check if the segment size can be recorded in bytes, that is, check
* if descriptor's limit field can delimited the allowed memory region
* precisely. This works up to 1MB. If the size is larger, 4K pages
* instead of bytes are used.
*/
if (size < BYTE_GRAN_MAX) {
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
phys, size, priv);
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
offset = 0;
} else {
init_dataseg(&segments->p_ldt[EXTRA_LDT_INDEX+index],
phys & ~0xFFFF, 0, priv);
*selector = ((EXTRA_LDT_INDEX+index)*0x08) | (1*0x04) | priv;
offset = phys & 0xFFFF;
}
return offset;
}
PUBLIC phys_bytes umap_remote(struct proc* rp, int seg,
vir_bytes vir_addr, vir_bytes bytes)
{
/* Calculate the physical memory address for a given virtual address. */
struct far_mem *fm;
#if 0
if(rp->p_misc_flags & MF_FULLVM) return 0;
#endif
if (bytes <= 0) return( (phys_bytes) 0);
if (seg < 0 || seg >= NR_REMOTE_SEGS) return( (phys_bytes) 0);
fm = &rp->p_priv->s_farmem[seg];
if (! fm->in_use) return( (phys_bytes) 0);
if (vir_addr + bytes > fm->mem_len) return( (phys_bytes) 0);
return(fm->mem_phys + (phys_bytes) vir_addr);
}
/*===========================================================================*
* umap_local *
*===========================================================================*/
PUBLIC phys_bytes umap_local(rp, seg, vir_addr, bytes)
register struct proc *rp; /* pointer to proc table entry for process */
int seg; /* T, D, or S segment */
vir_bytes vir_addr; /* virtual address in bytes within the seg */
vir_bytes bytes; /* # of bytes to be copied */
{
/* Calculate the physical memory address for a given virtual address. */
vir_clicks vc; /* the virtual address in clicks */
phys_bytes pa; /* intermediate variables as phys_bytes */
phys_bytes seg_base;
if(seg != T && seg != D && seg != S)
minix_panic("umap_local: wrong seg", seg);
if (bytes <= 0) return( (phys_bytes) 0);
if (vir_addr + bytes <= vir_addr) return 0; /* overflow */
vc = (vir_addr + bytes - 1) >> CLICK_SHIFT; /* last click of data */
if (seg != T)
seg = (vc < rp->p_memmap[D].mem_vir + rp->p_memmap[D].mem_len ? D : S);
if ((vir_addr>>CLICK_SHIFT) >= rp->p_memmap[seg].mem_vir +
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
if (vc >= rp->p_memmap[seg].mem_vir +
rp->p_memmap[seg].mem_len) return( (phys_bytes) 0 );
seg_base = (phys_bytes) rp->p_memmap[seg].mem_phys;
seg_base = seg_base << CLICK_SHIFT; /* segment origin in bytes */
pa = (phys_bytes) vir_addr;
pa -= rp->p_memmap[seg].mem_vir << CLICK_SHIFT;
return(seg_base + pa);
}
/*===========================================================================*
* umap_virtual *
*===========================================================================*/
PUBLIC phys_bytes umap_virtual(rp, seg, vir_addr, bytes)
register struct proc *rp; /* pointer to proc table entry for process */
int seg; /* T, D, or S segment */
vir_bytes vir_addr; /* virtual address in bytes within the seg */
vir_bytes bytes; /* # of bytes to be copied */
{
vir_bytes linear;
u32_t phys = 0;
if(seg == MEM_GRANT) {
phys = umap_grant(rp, vir_addr, bytes);
} else {
if(!(linear = umap_local(rp, seg, vir_addr, bytes))) {
kprintf("SYSTEM:umap_virtual: umap_local failed\n");
phys = 0;
} else {
if(vm_lookup(rp, linear, &phys, NULL) != OK) {
kprintf("SYSTEM:umap_virtual: vm_lookup of %s: seg 0x%lx: 0x%lx failed\n", rp->p_name, seg, vir_addr);
phys = 0;
}
if(phys == 0)
minix_panic("vm_lookup returned phys", phys);
}
}
if(phys == 0) {
kprintf("SYSTEM:umap_virtual: lookup failed\n");
return 0;
}
/* Now make sure addresses are contiguous in physical memory
* so that the umap makes sense.
*/
if(bytes > 0 && !vm_contiguous(rp, linear, bytes)) {
kprintf("umap_virtual: %s: %d at 0x%lx (vir 0x%lx) not contiguous\n",
rp->p_name, bytes, linear, vir_addr);
return 0;
}
/* phys must be larger than 0 (or the caller will think the call
* failed), and address must not cross a page boundary.
*/
vmassert(phys);
return phys;
}
/*===========================================================================*
* vm_lookup *
*===========================================================================*/
PUBLIC int vm_lookup(struct proc *proc, vir_bytes virtual, vir_bytes *physical, u32_t *ptent)
{
u32_t *root, *pt;
int pde, pte;
u32_t pde_v, pte_v;
NOREC_ENTER(vmlookup);
vmassert(proc);
vmassert(physical);
vmassert(!(proc->p_rts_flags & SLOT_FREE));
if(!HASPT(proc)) {
*physical = virtual;
NOREC_RETURN(vmlookup, OK);
}
/* Retrieve page directory entry. */
root = (u32_t *) proc->p_seg.p_cr3;
vmassert(!((u32_t) root % I386_PAGE_SIZE));
pde = I386_VM_PDE(virtual);
vmassert(pde >= 0 && pde < I386_VM_DIR_ENTRIES);
pde_v = phys_get32((u32_t) (root + pde));
if(!(pde_v & I386_VM_PRESENT)) {
NOREC_RETURN(vmlookup, EFAULT);
}
/* We don't expect to ever see this. */
if(pde_v & I386_VM_BIGPAGE) {
*physical = pde_v & I386_VM_ADDR_MASK_4MB;
if(ptent) *ptent = pde_v;
*physical += virtual & I386_VM_OFFSET_MASK_4MB;
} else {
/* Retrieve page table entry. */
pt = (u32_t *) I386_VM_PFA(pde_v);
vmassert(!((u32_t) pt % I386_PAGE_SIZE));
pte = I386_VM_PTE(virtual);
vmassert(pte >= 0 && pte < I386_VM_PT_ENTRIES);
pte_v = phys_get32((u32_t) (pt + pte));
if(!(pte_v & I386_VM_PRESENT)) {
NOREC_RETURN(vmlookup, EFAULT);
}
if(ptent) *ptent = pte_v;
/* Actual address now known; retrieve it and add page offset. */
*physical = I386_VM_PFA(pte_v);
*physical += virtual % I386_PAGE_SIZE;
}
NOREC_RETURN(vmlookup, OK);
}
/* From virtual address v in process p,
* lookup physical address and assign it to d.
* If p is NULL, assume it's already a physical address.
*/
#define LOOKUP(d, p, v, flagsp) { \
int r; \
if(!(p)) { (d) = (v); } \
else { \
if((r=vm_lookup((p), (v), &(d), flagsp)) != OK) { \
kprintf("vm_copy: lookup failed of 0x%lx in %d (%s)\n"\
"kernel stacktrace: ", (v), (p)->p_endpoint, \
(p)->p_name); \
util_stacktrace(); \
return r; \
} } }
/*===========================================================================*
* vm_contiguous *
*===========================================================================*/
PUBLIC int vm_contiguous(struct proc *targetproc, u32_t vir_buf, size_t bytes)
{
int first = 1, r, boundaries = 0;
u32_t prev_phys, po;
u32_t prev_vir;
vmassert(targetproc);
vmassert(bytes > 0);
if(!HASPT(targetproc))
return 1;
/* Start and end at page boundary to make logic simpler. */
po = vir_buf % I386_PAGE_SIZE;
if(po > 0) {
bytes += po;
vir_buf -= po;
}
po = (vir_buf + bytes) % I386_PAGE_SIZE;
if(po > 0)
bytes += I386_PAGE_SIZE - po;
/* Keep going as long as we cross a page boundary. */
while(bytes > 0) {
u32_t phys;
if((r=vm_lookup(targetproc, vir_buf, &phys, NULL)) != OK) {
kprintf("vm_contiguous: vm_lookup failed, %d\n", r);
kprintf("kernel stack: ");
util_stacktrace();
return 0;
}
if(!first) {
if(prev_phys+I386_PAGE_SIZE != phys) {
kprintf("vm_contiguous: no (0x%lx, 0x%lx)\n",
prev_phys, phys);
kprintf("kernel stack: ");
util_stacktrace();
return 0;
}
}
first = 0;
prev_phys = phys;
prev_vir = vir_buf;
vir_buf += I386_PAGE_SIZE;
bytes -= I386_PAGE_SIZE;
boundaries++;
}
return 1;
}
/*===========================================================================*
* vm_suspend *
*===========================================================================*/
PUBLIC int vm_suspend(struct proc *caller, struct proc *target,
vir_bytes linaddr, vir_bytes len, int wrflag, int type)
{
/* This range is not OK for this process. Set parameters
* of the request and notify VM about the pending request.
*/
vmassert(!RTS_ISSET(caller, VMREQUEST));
vmassert(!RTS_ISSET(target, VMREQUEST));
RTS_LOCK_SET(caller, VMREQUEST);
#if DEBUG_VMASSERT
caller->p_vmrequest.stacktrace[0] = '\0';
util_stacktrace_strcat(caller->p_vmrequest.stacktrace);
#endif
caller->p_vmrequest.writeflag = 1;
caller->p_vmrequest.start = linaddr;
caller->p_vmrequest.length = len;
caller->p_vmrequest.who = target->p_endpoint;
caller->p_vmrequest.type = type;
/* Connect caller on vmrequest wait queue. */
if(!(caller->p_vmrequest.nextrequestor = vmrequest))
mini_notify(proc_addr(SYSTEM), VM_PROC_NR);
vmrequest = caller;
}
/*===========================================================================*
* delivermsg *
*===========================================================================*/
int delivermsg(struct proc *rp)
{
phys_bytes addr;
int r;
NOREC_ENTER(deliver);
vmassert(rp->p_misc_flags & MF_DELIVERMSG);
vmassert(rp->p_delivermsg.m_source != NONE);
vmassert(rp->p_delivermsg_lin);
#if DEBUG_VMASSERT
if(rp->p_delivermsg_lin !=
umap_local(rp, D, rp->p_delivermsg_vir, sizeof(message))) {
printf("vir: 0x%lx lin was: 0x%lx umap now: 0x%lx\n",
rp->p_delivermsg_vir, rp->p_delivermsg_lin,
umap_local(rp, D, rp->p_delivermsg_vir, sizeof(message)));
minix_panic("that's wrong", NO_NUM);
}
#endif
vm_set_cr3(rp);
PHYS_COPY_CATCH(vir2phys(&rp->p_delivermsg),
rp->p_delivermsg_lin, sizeof(message), addr);
if(addr) {
vm_suspend(rp, rp, rp->p_delivermsg_lin, sizeof(message), 1,
VMSTYPE_DELIVERMSG);
r = VMSUSPEND;
} else {
#if DEBUG_VMASSERT
rp->p_delivermsg.m_source = NONE;
rp->p_delivermsg_lin = 0;
#endif
rp->p_misc_flags &= ~MF_DELIVERMSG;
r = OK;
}
NOREC_RETURN(deliver, r);
}
char *flagstr(u32_t e, int dir)
{
static char str[80];
strcpy(str, "");
FLAG(I386_VM_PRESENT);
FLAG(I386_VM_WRITE);
FLAG(I386_VM_USER);
FLAG(I386_VM_PWT);
FLAG(I386_VM_PCD);
FLAG(I386_VM_GLOBAL);
if(dir)
FLAG(I386_VM_BIGPAGE); /* Page directory entry only */
else
FLAG(I386_VM_DIRTY); /* Page table entry only */
return str;
}
void vm_pt_print(u32_t *pagetable, u32_t v)
{
int pte, l = 0;
int col = 0;
vmassert(!((u32_t) pagetable % I386_PAGE_SIZE));
for(pte = 0; pte < I386_VM_PT_ENTRIES; pte++) {
u32_t pte_v, pfa;
pte_v = phys_get32((u32_t) (pagetable + pte));
if(!(pte_v & I386_VM_PRESENT))
continue;
pfa = I386_VM_PFA(pte_v);
kprintf("%4d:%08lx:%08lx %2s ",
pte, v + I386_PAGE_SIZE*pte, pfa,
(pte_v & I386_VM_WRITE) ? "rw":"RO");
col++;
if(col == 3) { kprintf("\n"); col = 0; }
}
if(col > 0) kprintf("\n");
return;
}
void vm_print(u32_t *root)
{
int pde;
vmassert(!((u32_t) root % I386_PAGE_SIZE));
printf("page table 0x%lx:\n", root);
for(pde = 10; pde < I386_VM_DIR_ENTRIES; pde++) {
u32_t pde_v;
u32_t *pte_a;
pde_v = phys_get32((u32_t) (root + pde));
if(!(pde_v & I386_VM_PRESENT))
continue;
if(pde_v & I386_VM_BIGPAGE) {
kprintf("%4d: 0x%lx, flags %s\n",
pde, I386_VM_PFA(pde_v), flagstr(pde_v, 1));
} else {
pte_a = (u32_t *) I386_VM_PFA(pde_v);
kprintf("%4d: pt %08lx %s\n",
pde, pte_a, flagstr(pde_v, 1));
vm_pt_print(pte_a, pde * I386_VM_PT_ENTRIES * I386_PAGE_SIZE);
kprintf("\n");
}
}
return;
}
u32_t thecr3;
u32_t read_cr3(void)
{
level0(getcr3val);
return thecr3;
}
/*===========================================================================*
* lin_memset *
*===========================================================================*/
int vm_phys_memset(phys_bytes ph, u8_t c, phys_bytes bytes)
{
char *v;
u32_t p;
NOREC_ENTER(physmemset);
p = c | (c << 8) | (c << 16) | (c << 24);
if(!vm_running) {
phys_memset(ph, p, bytes);
NOREC_RETURN(physmemset, OK);
}
vmassert(nfreepdes >= 3);
/* With VM, we have to map in the physical memory.
* We can do this 4MB at a time.
*/
while(bytes > 0) {
int pde, t;
vir_bytes chunk = bytes;
phys_bytes ptr;
inusepde = NOPDE;
CREATEPDE(((struct proc *) NULL), ptr, ph, chunk, bytes, pde, t);
/* We can memset as many bytes as we have remaining,
* or as many as remain in the 4MB chunk we mapped in.
*/
phys_memset(ptr, p, chunk);
DONEPDE(pde);
bytes -= chunk;
ph += chunk;
}
NOREC_RETURN(physmemset, OK);
}
/*===========================================================================*
* virtual_copy_f *
*===========================================================================*/
PUBLIC int virtual_copy_f(src_addr, dst_addr, bytes, vmcheck)
struct vir_addr *src_addr; /* source virtual address */
struct vir_addr *dst_addr; /* destination virtual address */
vir_bytes bytes; /* # of bytes to copy */
int vmcheck; /* if nonzero, can return VMSUSPEND */
{
/* Copy bytes from virtual address src_addr to virtual address dst_addr.
* Virtual addresses can be in ABS, LOCAL_SEG, REMOTE_SEG, or BIOS_SEG.
*/
struct vir_addr *vir_addr[2]; /* virtual source and destination address */
phys_bytes phys_addr[2]; /* absolute source and destination */
int seg_index;
int i, r;
struct proc *procs[2];
NOREC_ENTER(virtualcopy);
/* Check copy count. */
if (bytes <= 0) return(EDOM);
/* Do some more checks and map virtual addresses to physical addresses. */
vir_addr[_SRC_] = src_addr;
vir_addr[_DST_] = dst_addr;
for (i=_SRC_; i<=_DST_; i++) {
int proc_nr, type;
struct proc *p;
type = vir_addr[i]->segment & SEGMENT_TYPE;
if((type != PHYS_SEG && type != BIOS_SEG) &&
isokendpt(vir_addr[i]->proc_nr_e, &proc_nr))
p = proc_addr(proc_nr);
else
p = NULL;
procs[i] = p;
/* Get physical address. */
switch(type) {
case LOCAL_SEG:
case LOCAL_VM_SEG:
if(!p) {
NOREC_RETURN(virtualcopy, EDEADSRCDST);
}
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
if(type == LOCAL_SEG)
phys_addr[i] = umap_local(p, seg_index, vir_addr[i]->offset,
bytes);
else
phys_addr[i] = umap_virtual(p, seg_index, vir_addr[i]->offset,
bytes);
if(phys_addr[i] == 0) {
kprintf("virtual_copy: map 0x%x failed for %s seg %d, "
"offset %lx, len %d, i %d\n",
type, p->p_name, seg_index, vir_addr[i]->offset,
bytes, i);
}
break;
case REMOTE_SEG:
if(!p) {
NOREC_RETURN(virtualcopy, EDEADSRCDST);
}
seg_index = vir_addr[i]->segment & SEGMENT_INDEX;
phys_addr[i] = umap_remote(p, seg_index, vir_addr[i]->offset, bytes);
break;
#if _MINIX_CHIP == _CHIP_INTEL
case BIOS_SEG:
phys_addr[i] = umap_bios(vir_addr[i]->offset, bytes );
break;
#endif
case PHYS_SEG:
phys_addr[i] = vir_addr[i]->offset;
break;
default:
kprintf("virtual_copy: strange type 0x%x\n", type);
NOREC_RETURN(virtualcopy, EINVAL);
}
/* Check if mapping succeeded. */
if (phys_addr[i] <= 0 && vir_addr[i]->segment != PHYS_SEG) {
kprintf("virtual_copy EFAULT\n");
NOREC_RETURN(virtualcopy, EFAULT);
}
}
if(vm_running) {
int r;
struct proc *caller;
caller = proc_addr(who_p);
if(RTS_ISSET(caller, VMREQUEST)) {
struct proc *target;
int pn;
vmassert(caller->p_vmrequest.vmresult != VMSUSPEND);
RTS_LOCK_UNSET(caller, VMREQUEST);
if(caller->p_vmrequest.vmresult != OK) {
printf("virtual_copy: returning VM error %d\n",
caller->p_vmrequest.vmresult);
NOREC_RETURN(virtualcopy, caller->p_vmrequest.vmresult);
}
}
if((r=lin_lin_copy(procs[_SRC_], phys_addr[_SRC_],
procs[_DST_], phys_addr[_DST_], bytes)) != OK) {
struct proc *target;
int wr;
phys_bytes lin;
if(r != EFAULT_SRC && r != EFAULT_DST)
minix_panic("lin_lin_copy failed", r);
if(!vmcheck) {
NOREC_RETURN(virtualcopy, r);
}
vmassert(procs[_SRC_] && procs[_DST_]);
if(r == EFAULT_SRC) {
lin = phys_addr[_SRC_];
target = procs[_SRC_];
wr = 0;
} else if(r == EFAULT_DST) {
lin = phys_addr[_DST_];
target = procs[_DST_];
wr = 1;
} else {
minix_panic("r strange", r);
}
#if 0
printf("virtual_copy: suspending caller %d / %s, target %d / %s\n",
caller->p_endpoint, caller->p_name,
target->p_endpoint, target->p_name);
#endif
vmassert(k_reenter == -1);
vmassert(proc_ptr->p_endpoint == SYSTEM);
vm_suspend(caller, target, lin, bytes, wr, VMSTYPE_KERNELCALL);
NOREC_RETURN(virtualcopy, VMSUSPEND);
}
NOREC_RETURN(virtualcopy, OK);
}
vmassert(!vm_running);
/* can't copy to/from process with PT without VM */
#define NOPT(p) (!(p) || !HASPT(p))
if(!NOPT(procs[_SRC_])) {
kprintf("ignoring page table src: %s / %d at 0x%lx\n",
procs[_SRC_]->p_name, procs[_SRC_]->p_endpoint, procs[_SRC_]->p_seg.p_cr3);
}
if(!NOPT(procs[_DST_])) {
kprintf("ignoring page table dst: %s / %d at 0x%lx\n",
procs[_DST_]->p_name, procs[_DST_]->p_endpoint,
procs[_DST_]->p_seg.p_cr3);
}
/* Now copy bytes between physical addresseses. */
if(phys_copy(phys_addr[_SRC_], phys_addr[_DST_], (phys_bytes) bytes))
NOREC_RETURN(virtualcopy, EFAULT);
NOREC_RETURN(virtualcopy, OK);
}
/*===========================================================================*
* data_copy *
*===========================================================================*/
PUBLIC int data_copy(
endpoint_t from_proc, vir_bytes from_addr,
endpoint_t to_proc, vir_bytes to_addr,
size_t bytes)
{
struct vir_addr src, dst;
src.segment = dst.segment = D;
src.offset = from_addr;
dst.offset = to_addr;
src.proc_nr_e = from_proc;
dst.proc_nr_e = to_proc;
return virtual_copy(&src, &dst, bytes);
}
/*===========================================================================*
* data_copy_vmcheck *
*===========================================================================*/
PUBLIC int data_copy_vmcheck(
endpoint_t from_proc, vir_bytes from_addr,
endpoint_t to_proc, vir_bytes to_addr,
size_t bytes)
{
struct vir_addr src, dst;
src.segment = dst.segment = D;
src.offset = from_addr;
dst.offset = to_addr;
src.proc_nr_e = from_proc;
dst.proc_nr_e = to_proc;
return virtual_copy_vmcheck(&src, &dst, bytes);
}
/*===========================================================================*
* arch_pre_exec *
*===========================================================================*/
PUBLIC int arch_pre_exec(struct proc *pr, u32_t ip, u32_t sp)
{
/* wipe extra LDT entries, set program counter, and stack pointer. */
memset(pr->p_seg.p_ldt + EXTRA_LDT_INDEX, 0,
sizeof(pr->p_seg.p_ldt[0]) * (LDT_SIZE - EXTRA_LDT_INDEX));
pr->p_reg.pc = ip;
pr->p_reg.sp = sp;
}
/*===========================================================================*
* arch_umap *
*===========================================================================*/
PUBLIC int arch_umap(struct proc *pr, vir_bytes offset, vir_bytes count,
int seg, phys_bytes *addr)
{
switch(seg) {
case BIOS_SEG:
*addr = umap_bios(offset, count);
return OK;
}
/* This must be EINVAL; the umap fallback function in
* lib/syslib/alloc_util.c depends on it to detect an
* older kernel (as opposed to mapping error).
*/
return EINVAL;
}
/* VM reports page directory slot we're allowed to use freely. */
void i386_freepde(int pde)
{
if(nfreepdes >= WANT_FREEPDES)
return;
freepdes[nfreepdes++] = pde;
}