Commit graph

9 commits

Author SHA1 Message Date
Ben Gras
a06e2ab395 big <utmp.h>-inspired netbsd switch
import/switch of:
init, getty, reboot, halt, shutdown, wall, last

changes:
	. change reboot() call to netbsd prototype and args
	. allows pristine <utmp.h>
	. use clean <sys/reboot.h> instead of <minix/reboot.h>
	. implement TIOCSCTTY for use by getty so getty can get
	  controlling terminal from init's child(ren)
	. allow NULL envp for exec

Change-Id: I5ca02cb4230857140c08794bbfeba7df982c58a3
2014-03-01 09:05:02 +01:00
Antoine Leca
9f467932a6 VMWare poweroff magic cli;hlt sequence
Change-Id: I9d8f96cc2e6423b89eb743e27550225d8759ee1d
2013-08-11 23:55:43 +02:00
Xiaoguang Sun
26428d4bc6 Add acpi poweroff
Use acpi poweroff if it's possible.

Change-Id: I103cc288523bf63fa536750b1d408ac88bbe35fb
Signed-off-by: Ben Gras <ben@minix3.org>
Signed-off-by: Tomas Hruby <tom@minix3.org>
2013-05-29 16:12:33 +00:00
David van Moolenbroek
50e46307de Move MINIX reboot definitions into minix/reboot.h
Also fix a buffer overflow in commands/reboot/sh_wall.c.

Change-Id: I3a61057c4f0221d1700e14d44520b4ad17f1dbe1
2013-03-20 16:50:01 +00:00
Thomas Veerman
e232e0cbf0 Kernel: make shutdown more verbose
Change-Id: Iab5fed4cb617a9dbce164ff81c7dedf408e9fd98
2013-03-04 10:13:50 +00:00
Erik van der Kouwe
57c748b968 Remove ability to pass commands to bootloader 2012-11-22 19:16:17 +01:00
Erik van der Kouwe
22fa466268 Restore poweroff to some of it's former glory (on QEMU, at least) 2012-11-21 20:28:37 +01:00
David van Moolenbroek
cf9a4ec79b Kernel: clean up include statements a bit
Coverity was flagging a recursive include between kernel.h and
cpulocals.h. As cpulocals.h also included proc.h, we can move that
include statement into kernel.h, and clean up the source files'
include statements accordingly.
2012-08-14 16:29:05 +00:00
Ben Gras
50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00