The tested targets are the followgin ones:
* tools
* distribution
* sets
* release
The remaining NetBSD targets have not been disabled nor tested
*at all*. Try them at your own risk, they may reboot the earth.
For all compliant Makefiles, objects and generated files are put in
MAKEOBJDIR, which means you can now keep objects between two branch
switching. Same for DESTDIR, please refer to build.sh options.
Regarding new or modifications of Makefiles a few things:
* Read share/mk/bsd.README
* If you add a subdirectory, add a Makefile in it, and have it called
by the parent through the SUBDIR variable.
* Do not add arbitrary inclusion which crosses to another branch of
the hierarchy; If you can't do without it, put a comment on why.
If possible, do not use inclusion at all.
* Use as much as possible the infrastructure, it is here to make
life easier, do not fight it.
Sets and package are now used to track files.
We have one set called "minix", composed of one package called "minix-sys"
This decreases external dependencies for crosscompilation. Note that
these libraries are not built nor used by Minix itself.
Furthermore, the shell scripts that download the tarballs for these
libraries, gcc, binutils, and gmake now also support curl in addition
to wget.
This commit finalizes support for cross compilation. The tools
directory are all links to the actual tools and are built on the
host system to build Minix. build.sh is the work horse that takes
care of all environment settings. It's slightly adjusted for Minix.
The /usr/src/Makefile has additional targets needed for cross
compilation.
. Some Makefile fixes to automatically differentiate between a normal
compilation and cross-compilation. Also, build compressed images.
. Harmonize ramdisk rc scripts for normal use case and ext2 ramdisk.
. ext2_ramdisk filesystem prototype fixes.
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.
Changes in this commit:
. drop boot monitor -> allowing dropping ack support
. facility to copy ELF boot files to /boot so that old boot monitor
can still boot fairly easily, see UPDATING
. no more ack-format libraries -> single-case libraries
. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
. drop several ack toolchain commands, but not all support
commands (e.g. aal is gone but acksize is not yet).
. a few libc files moved to netbsd libc dir
. new /bin/date as minix date used code in libc/
. test compile fix
. harmonize includes
. /usr/lib is no longer special: without ack, /usr/lib plays no
kind of special bootstrapping role any more and bootstrapping
is done exclusively through packages, so releases depend even
less on the state of the machine making them now.
. rename nbsd_lib* to lib*
. reduce mtree
Kernels and system services are stored in a single directory in the
/boot/minix/ and rotated like /boot/images. /boot/minix_latest slink
is created automatically.
System serives are prefixed by "modNN_" to allow to easily load them
using "mod*" pattern.
Also following functionality was added:
- Add install_master to the installboot from NetBSD.
- Check if enough space for bootxx.
Old installboot was renamed to installboot_minix.
. if the build target is invoked again for the install target, the
stack sizes aren't set properly. A workaround is to only build
and not install the servers. (Installing them doesn't really make
sense anyway.)
3 sets of libraries are built now:
. ack: all libraries that ack can compile (/usr/lib/i386/)
. clang+elf: all libraries with minix headers (/usr/lib/)
. clang+elf: all libraries with netbsd headers (/usr/netbsd/)
Once everything can be compiled with netbsd libraries and headers, the
/usr/netbsd hierarchy will be obsolete and its libraries compiled with
netbsd headers will be installed in /usr/lib, and its headers
in /usr/include. (i.e. minix libc and current minix headers set
will be gone.)
To use the NetBSD libc system (libraries + headers) before
it is the default libc, see:
http://wiki.minix3.org/en/DevelopersGuide/UsingNetBSDCode
This wiki page also documents the maintenance of the patch
files of minix-specific changes to imported NetBSD code.
Changes in this commit:
. libsys: Add NBSD compilation and create a safe NBSD-based libc.
. Port rest of libraries (except libddekit) to new header system.
. Enable compilation of libddekit with new headers.
. Enable kernel compilation with new headers.
. Enable drivers compilation with new headers.
. Port legacy commands to new headers and libc.
. Port servers to new headers.
. Add <sys/sigcontext.h> in compat library.
. Remove dependency file in tree.
. Enable compilation of common/lib/libc/atomic in libsys
. Do not generate RCSID strings in libc.
. Temporarily disable zoneinfo as they are incompatible with NetBSD format
. obj-nbsd for .gitignore
. Procfs: use only integer arithmetic. (Antoine Leca)
. Increase ramdisk size to create NBSD-based images.
. Remove INCSYMLINKS handling hack.
. Add nbsd_include/sys/exec_elf.h
. Enable ELF compilation with NBSD libc.
. Add 'make nbsdsrc' in tools to download reference NetBSD sources.
. Automate minix-port.patch creation.
. Avoid using fstavfs() as it is *extremely* slow and unneeded.
. Set err() as PRIVATE to avoid name clash with libc.
. [NBSD] servers/vm: remove compilation warnings.
. u32 is not a long in NBSD headers.
. UPDATING info on netbsd hierarchy
. commands fixes for netbsd libc
In this second phase, scheduling is moved from PM to its own
scheduler (see r6557 for phase one). In the next phase we hope to a)
include useful information in the "out of quantum" message and b)
create some simple scheduling policy that makes use of that
information.
When the system starts up, PM will iterate over its process table and
ask SCHED to take over scheduling unprivileged processes. This is
done by sending a SCHEDULING_START message to SCHED. This message
includes the processes endpoint, the parent's endpoint and its nice
level. The scheduler adds this process to its schedproc table, issues
a schedctl, and returns its own endpoint to PM - as the endpoint of
the effective scheduler. When a process terminates, a SCHEDULING_STOP
message is sent to the scheduler.
The reason for this effective endpoint is for future compatibility.
Some day, we may have a scheduler that, instead of scheduling the
process itself, forwards the SCHEDULING_START message on to another
scheduler.
PM has information on who schedules whom. As such, scheduling
messages from user-land are sent through PM. An example is when
processes change their priority, using nice(). In that case, a
getsetpriority message is sent to PM, which then sends a
SCHEDULING_SET_NICE to the process's effective scheduler.
When a process is forked through PM, it inherits its parent's
scheduler, but is spawned with an empty quantum. As before, a request
to fork a process flows through VM before returning to PM, which then
wakes up the child process. This flow has been modified slightly so
that PM notifies the scheduler of the new process, before waking up
the child process. If the scheduler fails to take over scheduling,
the child process is torn down and the fork fails with an erroneous
value.
Process priority is entirely decided upon using nice levels. PM
stores a copy of each process's nice level and when a child is
forked, its parent's nice level is sent in the SCHEDULING_START
message. How this level is mapped to a priority queue is up to the
scheduler. It should be noted that the nice level is used to
determine the max_priority and the parent could have been in a lower
priority when it was spawned. To prevent a CPU intensive process from
hawking the CPU by continuously forking children that get scheduled
in the max_priority, the scheduler should determine in which queue
the parent is currently scheduled, and schedule the child in that
same queue.
Other fixes: The USER_Q in kernel/proc.h was incorrectly defined as
NR_SCHED_QUEUES/2. That results in a "off by one" error when
converting priority->nice->priority for nice=0. This also had the
side effect that if someone were to set the MAX_USER_Q to something
else than 0, then USER_Q would be off.
- Revise VFS-FS protocol and update VFS/MFS/ISOFS accordingly.
- Clean up MFS by removing old, dead code (backwards compatibility is broken by
the new VFS-FS protocol, anyway) and rewrite other parts. Also, make sure all
functions have proper banners and prototypes.
- VFS should always provide a (syntactically) valid path to the FS; no need for
the FS to do sanity checks when leaving/entering mount points.
- Fix several bugs in MFS:
- Several path lookup bugs in MFS.
- A link can be too big for the path buffer.
- A mountpoint can become inaccessible when the creation of a new inode
fails, because the inode already exists and is a mountpoint.
- Introduce support for supplemental groups.
- Add test 46 to test supplemental group functionality (and removed obsolete
suppl. tests from test 2).
- Clean up VFS (not everything is done yet).
- ISOFS now opens device read-only. This makes the -r flag in the mount command
unnecessary (but will still report to be mounted read-write).
- Introduce PipeFS. PipeFS is a new FS that handles all anonymous and
named pipes. However, named pipes still reside on the (M)FS, as they are part
of the file system on disk. To make this work VFS now has a concept of
'mapped' inodes, which causes read, write, truncate and stat requests to be
redirected to the mapped FS, and all other requests to the original FS.