Commit graph

29 commits

Author SHA1 Message Date
Lionel Sambuc 433d6423c3 New sources layout
Change-Id: Ic716f336b7071063997cf5b4dae6d50e0b4631e9
2014-07-31 16:00:30 +02:00
Lionel Sambuc 333fd250f5 Message type for SYS_TRACE
Change-Id: Ib579fab949b76797ea7d6cb5ff4ae3d9b32f630c
2014-07-28 17:05:48 +02:00
Kees Jongenburger eff37b8a8b kernel:enable trace on arm.
Change-Id: Iabe6dfd758e8f1cdb4a18e2f2ab8f8ca988f3c86
2013-02-17 08:40:38 +01:00
Ben Gras 604046faf3 kernel: trap-dependent state restore, trace fixes
. restore state depends on how saving of state was done;
	  also remember trap style in sig context
	. actually set and restore TRACEBIT with new trap styles;
	  have to remove it once process enters kernel though, done
	  in debug trap exception handler
	. introduce MF_STEP that makes arch-specific code
	  turn on trace bit instead of setting TRACEBIT directly,
	  a bit more arch-friendly and avoids keeping precious
	  state in per-process PSW arch-dependently
2013-01-08 15:47:37 +00:00
Arun Thomas 471a03a362 ARM support for kernel and vm 2012-10-07 21:38:03 -04:00
Arun Thomas 19ffad7692 Remove ACK EM_WSIZE/EM_PSIZE macro usage 2012-08-06 17:49:22 +02:00
Arun Thomas 6723dcfab7 Replace MACHINE/CHIP macros with compiler macros 2012-08-06 17:49:22 +02:00
Ben Gras 50e2064049 No more intel/minix segments.
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.

There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.

No static pre-allocated memory sizes exist any more.

Changes to booting:
        . The pre_init.c leaves the kernel and modules exactly as
          they were left by the bootloader in physical memory
        . The kernel starts running using physical addressing,
          loaded at a fixed location given in its linker script by the
          bootloader.  All code and data in this phase are linked to
          this fixed low location.
        . It makes a bootstrap pagetable to map itself to a
          fixed high location (also in linker script) and jumps to
          the high address. All code and data then use this high addressing.
        . All code/data symbols linked at the low addresses is prefixed by
          an objcopy step with __k_unpaged_*, so that that code cannot
          reference highly-linked symbols (which aren't valid yet) or vice
          versa (symbols that aren't valid any more).
        . The two addressing modes are separated in the linker script by
          collecting the unpaged_*.o objects and linking them with low
          addresses, and linking the rest high. Some objects are linked
          twice, once low and once high.
        . The bootstrap phase passes a lot of information (e.g. free memory
          list, physical location of the modules, etc.) using the kinfo
          struct.
        . After this bootstrap the low-linked part is freed.
        . The kernel maps in VM into the bootstrap page table so that VM can
          begin executing. Its first job is to make page tables for all other
          boot processes. So VM runs before RS, and RS gets a fully dynamic,
          VM-managed address space. VM gets its privilege info from RS as usual
          but that happens after RS starts running.
        . Both the kernel loading VM and VM organizing boot processes happen
	  using the libexec logic. This removes the last reason for VM to
	  still know much about exec() and vm/exec.c is gone.

Further Implementation:
        . All segments are based at 0 and have a 4 GB limit.
        . The kernel is mapped in at the top of the virtual address
          space so as not to constrain the user processes.
        . Processes do not use segments from the LDT at all; there are
          no segments in the LDT any more, so no LLDT is needed.
        . The Minix segments T/D/S are gone and so none of the
          user-space or in-kernel copy functions use them. The copy
          functions use a process endpoint of NONE to realize it's
          a physical address, virtual otherwise.
        . The umap call only makes sense to translate a virtual address
          to a physical address now.
        . Segments-related calls like newmap and alloc_segments are gone.
        . All segments-related translation in VM is gone (vir2map etc).
        . Initialization in VM is simpler as no moving around is necessary.
        . VM and all other boot processes can be linked wherever they wish
          and will be mapped in at the right location by the kernel and VM
          respectively.

Other changes:
        . The multiboot code is less special: it does not use mb_print
          for its diagnostics any more but uses printf() as normal, saving
          the output into the diagnostics buffer, only printing to the
          screen using the direct print functions if a panic() occurs.
        . The multiboot code uses the flexible 'free memory map list'
          style to receive the list of free memory if available.
        . The kernel determines the memory layout of the processes to
          a degree: it tells VM where the kernel starts and ends and
          where the kernel wants the top of the process to be. VM then
          uses this entire range, i.e. the stack is right at the top,
          and mmap()ped bits of memory are placed below that downwards,
          and the break grows upwards.

Other Consequences:
        . Every process gets its own page table as address spaces
          can't be separated any more by segments.
        . As all segments are 0-based, there is no distinction between
          virtual and linear addresses, nor between userspace and
          kernel addresses.
        . Less work is done when context switching, leading to a net
          performance increase. (8% faster on my machine for 'make servers'.)
	. The layout and configuration of the GDT makes sysenter and syscall
	  possible.
2012-07-15 22:30:15 +02:00
Ben Gras 7336a67dfe retire PUBLIC, PRIVATE and FORWARD 2012-03-25 21:58:14 +02:00
Arun Thomas 4ed3a0cf3a Convert kernel over to bsdmake 2010-04-01 22:22:33 +00:00
Tomas Hruby c6fec6866f No locking in kernel code
- No locking in RTS_(UN)SET macros

- No lock_notify()

- Removed unused lock_send()

- No lock/unlock macros anymore
2010-02-09 15:26:58 +00:00
Tomas Hruby 728f0f0c49 Removal of the system task
* Userspace change to use the new kernel calls

	- _taskcall(SYSTASK...) changed to _kernel_call(...)

	- int 32 reused for the kernel calls

	- _do_kernel_call() to make the trap to kernel

	- kernel_call() to make the actuall kernel call from C using
	  _do_kernel_call()

	- unlike ipc call the kernel call always succeeds as kernel is
	  always available, however, kernel may return an error

* Kernel side implementation of kernel calls

	- the SYSTEm task does not run, only the proc table entry is
	  preserved

	- every data_copy(SYSTEM is no data_copy(KERNEL

	- "locking" is an empty operation now as everything runs in
	  kernel

	- sys_task() is replaced by kernel_call() which copies the
	  message into kernel, dispatches the call to its handler and
	  finishes by either copying the results back to userspace (if
	  need be) or by suspending the process because of VM

	- suspended processes are later made runnable once the memory
	  issue is resolved, picked up by the scheduler and only at
	  this time the call is resumed (in fact restarted) which does
	  not need to copy the message from userspace as the message
	  is already saved in the process structure.

	- no ned for the vmrestart queue, the scheduler will restart
	  the system calls

	- no special case in do_vmctl(), all requests remove the
	  RTS_VMREQUEST flag
2010-02-09 15:20:09 +00:00
Tomas Hruby cca24d06d8 This patch removes the global variables who_p and who_e from the
kernel (sys task).  The main reason is that these would have to become
cpu local variables on SMP.  Once the system task is not a task but a
genuine part of the kernel there is even less reason to have these
extra variables as proc_ptr will already contain all neccessary
information. In addition converting who_e to the process pointer and
back again all the time will be avoided.

Although proc_ptr will contain all important information, accessing it
as a cpu local variable will be fairly expensive, hence the value
would be assigned to some on stack local variable. Therefore it is
better to add the 'caller' argument to the syscall handlers to pass
the value on stack anyway. It also clearly denotes on who's behalf is
the syscall being executed.

This patch also ANSIfies the syscall function headers.

Last but not least, it also fixes a potential bug in virtual_copy_f()
in case the check is disabled. So far the function in case of a
failure could possible reuse an old who_p in case this function had
not been called from the system task.

virtual_copy_f() takes the caller as a parameter too. In case the
checking is disabled, the caller must be NULL and non NULL if it is
enabled as we must be able to suspend the caller.
2010-02-03 09:04:48 +00:00
David van Moolenbroek e423c86009 ptrace(2) modifications:
- add T_GETRANGE/T_SETRANGE to get/set ranges of values
- change EIO error code to EFAULT
- move common-I&D text-to-data translation to umap_local
2009-12-29 21:32:15 +00:00
Tomas Hruby a972f4bacc All macros defining rts flags are prefixed with RTS_
- macros used with RTS_SET group of macros to define struct proc p_rts_flags are
  now prefixed with RTS_ to make things clear
2009-11-10 09:11:13 +00:00
David van Moolenbroek a07f8d7646 Fix ptrace bug when reattaching to a detached process 2009-11-09 08:12:25 +00:00
David van Moolenbroek b423d7b477 Merge of David's ptrace branch. Summary:
o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL
o PM signal handling logic should now work properly, even with debuggers
  being present
o Asynchronous PM/VFS protocol, full IPC support for senda(), and
  AMF_NOREPLY senda() flag

DETAILS

Process stop and delay call handling of PM:
o Added sys_runctl() kernel call with sys_stop() and sys_resume()
  aliases, for PM to stop and resume a process
o Added exception for sending/syscall-traced processes to sys_runctl(),
  and matching SIGKREADY pseudo-signal to PM
o Fixed PM signal logic to deal with requests from a process after
  stopping it (so-called "delay calls"), using the SIGKREADY facility
o Fixed various PM panics due to race conditions with delay calls versus
  VFS calls
o Removed special PRIO_STOP priority value
o Added SYS_LOCK RTS kernel flag, to stop an individual process from
  running while modifying its process structure

Signal and debugger handling in PM:
o Fixed debugger signals being dropped if a second signal arrives when
  the debugger has not retrieved the first one
o Fixed debugger signals being sent to the debugger more than once
o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR
  protocol message
o Detached debugger signals from general signal logic and from being
  blocked on VFS calls, meaning that even VFS can now be traced
o Fixed debugger being unable to receive more than one pending signal in
  one process stop
o Fixed signal delivery being delayed needlessly when multiple signals
  are pending
o Fixed wait test for tracer, which was returning for children that were
  not waited for
o Removed second parallel pending call from PM to VFS for any process
o Fixed process becoming runnable between exec() and debugger trap
o Added support for notifying the debugger before the parent when a
  debugged child exits
o Fixed debugger death causing child to remain stopped forever
o Fixed consistently incorrect use of _NSIG

Extensions to ptrace():
o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a
  debugger to and from a process
o Added T_SYSCALL ptrace request, to trace system calls
o Added T_SETOPT ptrace request, to set trace options
o Added TO_TRACEFORK trace option, to attach automatically to children
  of a traced process
o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon
  a successful exec() of the tracee
o Extended T_GETUSER ptrace support to allow retrieving a process's priv
  structure
o Removed T_STOP ptrace request again, as it does not help implementing
  debuggers properly
o Added MINIX3-specific ptrace test (test42)
o Added proper manual page for ptrace(2)

Asynchronous PM/VFS interface:
o Fixed asynchronous messages not being checked when receive() is called
  with an endpoint other than ANY
o Added AMF_NOREPLY senda() flag, preventing such messages from
  satisfying the receive part of a sendrec()
o Added asynsend3() that takes optional flags; asynsend() is now a
  #define passing in 0 as third parameter
o Made PM/VFS protocol asynchronous; reintroduced tell_fs()
o Made PM_BASE request/reply number range unique
o Hacked in a horrible temporary workaround into RS to deal with newly
  revealed RS-PM-VFS race condition triangle until VFS is asynchronous

System signal handling:
o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal
o Removed is-superuser check from PM's do_procstat() (aka getsigset())
o Added sigset macros to allow system processes to deal with the full
  signal set, rather than just the POSIX subset

Miscellaneous PM fixes:
o Split do_getset into do_get and do_set, merging common code and making
  structure clearer
o Fixed setpriority() being able to put to sleep processes using an
  invalid parameter, or revive zombie processes
o Made find_proc() global; removed obsolete proc_from_pid()
o Cleanup here and there

Also included:
o Fixed false-positive boot order kernel warning
o Removed last traces of old NOTIFY_FROM code

THINGS OF POSSIBLE INTEREST

o It should now be possible to run PM at any priority, even lower than
  user processes
o No assumptions are made about communication speed between PM and VFS,
  although communication must be FIFO
o A debugger will now receive incoming debuggee signals at kill time
  only; the process may not yet be fully stopped
o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 09:57:22 +00:00
Ben Gras b560a36b20 trace fix contributed by Joren l'Ami 2009-04-02 11:38:23 +00:00
Ben Gras c078ec0331 Basic VM and other minor improvements.
Not complete, probably not fully debugged or optimized.
2008-11-19 12:26:10 +00:00
Ben Gras 41e9fedf87 Mostly bugfixes of bugs triggered by the test set.
bugfixes:
 SYSTEM:
 . removed
        rc->p_priv->s_flags = 0;
   for the priv struct shared by all user processes in get_priv(). this
   should only be done once. doing a SYS_PRIV_USER in sys_privctl()
   caused the flags of all user processes to be reset, so they were no
   longer PREEMPTIBLE. this happened when RS executed a policy script.
   (this broke test1 in the test set)

 VFS/MFS:
 . chown can change the mode of a file, and chmod arguments are only
   part of the full file mode so the full filemode is slightly magic.
   changed these calls so that the final modes are returned to VFS, so
   that the vnode can be kept up-to-date.
   (this broke test11 in the test set)

 MFS:
 . lookup() checked for sizeof(string) instead of sizeof(user_path),
   truncating long path names
   (caught by test 23)
 . truncate functions neglected to update ctime
   (this broke test16)

 VFS:
 . corner case of an empty filename lookup caused fields of a request
   not to be filled in in the lookup functions, not making it clear
   that the lookup had failed, causing messages to garbage processes,
   causing strange failures.
   (caught by test 30)
 . trust v_size in vnode when doing reads or writes on non-special
   files, truncating i/o where necessary; this is necessary for pipes,
   as MFS can't tell when a pipe has been truncated without it being
   told explicitly each time.
   when the last reader/writer on a pipe closes, tell FS about
   the new size using truncate_vn().
   (this broke test 25, among others)
 . permission check for chdir() had disappeared; added a
   forbidden() call
   (caught by test 23)

new code, shouldn't change anything:
 . introduced RTS_SET, RTS_UNSET, and RTS_ISSET macro's, and their
   LOCK variants. These macros set and clear the p_rts_flags field,
   causing a lot of duplicated logic like

       old_flags = rp->p_rts_flags;            /* save value of the flags */
       rp->p_rts_flags &= ~NO_PRIV;
       if (old_flags != 0 && rp->p_rts_flags == 0) lock_enqueue(rp);

   to change into the simpler

       RTS_LOCK_UNSET(rp, NO_PRIV);

   so the macros take care of calling dequeue() and enqueue() (or lock_*()),
   as the case may be). This makes the code a bit more readable and a
   bit less fragile.
 . removed return code from do_clocktick in CLOCK as it currently
   never replies
 . removed some debug code from VFS
 . fixed grant debug message in device.c
 
preemptive checks, tests, changes:
 . added return code checks of receive() to SYSTEM and CLOCK
 . O_TRUNC should never arrive at MFS (added sanity check and removed
   O_TRUNC code)
 . user_path declared with PATH_MAX+1 to let it be null-terminated
 . checks in MFS to see if strings passed by VFS are null-terminated
 
 IS:
 . static irq name table thrown out
2007-02-01 17:50:02 +00:00
Ben Gras 6f77685609 Split of architecture-dependent and -independent functions for i386,
mainly in the kernel and headers. This split based on work by
Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture
port.

 . kernel does not program the interrupt controller directly, do any
   other architecture-dependent operations, or contain assembly any more,
   but uses architecture-dependent functions in arch/$(ARCH)/.
 . architecture-dependent constants and types defined in arch/$(ARCH)/include.
 . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now,
   architecture-independent functions.
 . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls
   and live in arch/i386/do_* now.
 . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have
   gone, and 'machine.protected' is gone (and always taken to be 1 in i386).
   If 86 support is to return, it should be a new architecture.
 . prototypes for the architecture-dependent functions defined in
   kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h
 . /etc/make.conf included in makefiles and shell scripts that need to
   know the building architecture; it defines ARCH=<arch>, currently only
   i386.
 . some basic per-architecture build support outside of the kernel (lib)
 . in clock.c, only dequeue a process if it was ready
 . fixes for new include files

files deleted:
 . mpx/klib.s - only for choosing between mpx/klib86 and -386
 . klib86.s - only for 86

i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/:
 . mpx386.s (entry point)
 . klib386.s
 . sconst.h
 . exception.c
 . protect.c
 . protect.h
 . i8269.c
2006-12-22 15:22:27 +00:00
Philip Homburg c5efbf71c0 first commit of extra ptrace code for fault injection 2006-08-28 14:59:56 +00:00
Ben Gras 1335d5d700 'proc number' is process slot, 'endpoint' are generation-aware process
instance numbers, encoded and decoded using macros in <minix/endpoint.h>.

proc number -> endpoint migration
  . proc_nr in the interrupt hook is now an endpoint, proc_nr_e.
  . m_source for messages and notifies is now an endpoint, instead of
    proc number.
  . isokendpt() converts an endpoint to a process number, returns
    success (but fails if the process number is out of range, the
    process slot is not a living process, or the given endpoint
    number does not match the endpoint number in the process slot,
    indicating an old process).
  . okendpt() is the same as isokendpt(), but panic()s if the conversion
    fails. This is mainly used for decoding message.m_source endpoints,
    and other endpoint numbers in kernel data structures, which should
    always be correct.
  . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt()
    get passed the __FILE__ and __LINE__ of the calling lines, and
    print messages about what is wrong with the endpoint number
    (out of range proc, empty proc, or inconsistent endpoint number),
    with the caller, making finding where the conversion failed easy
    without having to include code for every call to print where things
    went wrong. Sometimes this is harmless (wrong arg to a kernel call),
    sometimes it's a fatal internal inconsistency (bogus m_source).
  . some process table fields have been appended an _e to indicate it's
    become and endpoint.
  . process endpoint is stored in p_endpoint, without generation number.
    it turns out the kernel never needs the generation number, except
    when fork()ing, so it's decoded then.
  . kernel calls all take endpoints as arguments, not proc numbers.
    the one exception is sys_fork(), which needs to know in which slot
    to put the child.
2006-03-03 10:00:02 +00:00
Ben Gras 32514fb5f9 Al's system call -> kernel call renaming 2005-10-14 08:58:59 +00:00
Jorrit Herder a01645b788 New scheduling code in kernel. Work in progress.
Round-robin within one priority queue works fine.
Ageing algorithm to be done.
2005-08-19 16:43:28 +00:00
Jorrit Herder 0946d128cd - Kernel call handlers cleaned up. More strict checking of input parameters.
- Moved generic_handler() from system.c to system/do_irqctl.c.
- Set privileges of system processes somewhat stricter.
2005-07-29 15:26:23 +00:00
Jorrit Herder 8866b4d0ef Kernel changes:
- reinstalled priority changing, now in sched() and unready()
- reinstalled check on message buffer in sys_call()
- reinstalled check in send masks in sys_call()
- changed do_fork() to get new privilege structure for SYS_PROCs
- removed some processes from boot image---will be dynamically started later
2005-07-26 12:48:34 +00:00
Philip Homburg 153fdabb26 Fixed do_trace to properly return (status) information. 2005-07-25 12:15:05 +00:00
Jorrit Herder 42ab148155 Reorganized system call library; uses separate file per call now.
New configuration header file to include/ exclude functionality.
Extracted privileged features from struct proc and create new struct priv.
Renamed various system calls for readability.
2005-07-14 15:12:12 +00:00
Renamed from kernel/system/tracing.c (Browse further)