Clock configuration will be needed by other/future subsystems such as i2c.
Extract the functionality from libgpio and put it into it's own library.
Change-Id: I6f6de0b3fb4d305ddfeac74123b78c983d1318dd
. by making the address and frequency of the
free running clock kinfo members, set at runtime
in the kernel, instead of compile time constants
in libsys
Change-Id: I4a8387302d4d3ffd47d2448525725683a74c9a4f
. libc: add vfs_mmap, a way for vfs to initiate mmap()s.
This is a good special case to have as vfs is a slightly
different client from regular user processes. It doesn't do it
for itself, and has the dev & inode info already so the callback
to VFS for the lookup isn't necessary. So it has different info
to have to give to VM.
. libc: also add minix_mmap64() that accepts a 64-bit offset, even
though our off_t is still 32 bit now.
. On exec() time, try to mmap() in the executable if available.
(It is not yet available in this commit.)
. To support mmap(), add do_vm_call that allows VM to lookup
(to ino+dev), do i/o from and close FD's on behalf of other
processes.
Change-Id: I831551e45a6781c74313c450eb9c967a68505932
. add receive hooks in the kernel to print asynchronously
delivered messages
. do not rely on MF_REPLY_PEND to decide between calls and errors,
as that isn't reliable for asynchronous messages; try both instead
. add _sendcall() that extract-mfield.sh can then reliably recognize
the fields for messages that are sent with just send()
. add DEBUG_DUMPIPC_NAMES to restrict printed messages to
from/to given process names
Change-Id: Ia65eb02a69a2b58e73bf9f009987be06dda774a3
The natural term to use when talking about MINIX big pages on ARM
is SECTION. A section is a level 1 page table entry pointing to
a 1MB area.
Change-Id: I9bd27ca99bc772126c31c27a537b1415db20c4a6
libminixfs may now be informed of changes to the block usage on the
filesystem. if the net change becomes big enough, libminixfs may
resize the cache based on the new usage.
. update the 2 FSes to provide this information to libminixfs
Change-Id: I158815a11da801fd5572a8de89c9e6c039b82650
This commit introduces a new request type called REQ_BPEEK. It
requests minor device blocks from the FS. Analogously to REQ_PEEK,
it requests the filesystem to get the requested blocks into its
cache, without actually copying the result anywhere.
Change-Id: If1d06645b0e17553a64b3167091e9d12efeb3d6f
Primary purpose of change: to support the mmap implementation, VM must
know both (a) about some block metadata for FS cache blocks, i.e.
inode numbers and inode offsets where applicable; and (b) know about
*all* cache blocks, i.e. also of the FS primary caches and not just
the blocks that spill into the secondary one. This changes the
interface and VM data structures.
This change is only for the interface (libminixfs) and VM data
structures; the filesystem code is unmodified, so although the
secondary cache will be used as normal, blocks will not be annotated
with inode information until the FS is modified to provide this
information. Until it is modified, mmap of files will fail gracefully
on such filesystems.
This is indicated to VFS/VM by returning ENOSYS for REQ_PEEK.
Change-Id: I1d2df6c485e6c5e89eb28d9055076cc02629594e
Some (backwards-compatible) changes in mmap() call message fields
that allow for a 64-bit offset. minix_mmap() takes an off_t and
minix_mmap64() takes a u64_t. Some mmap() work in VM goes into a
separate function, using the new fields, so that that can be re-used
when files are to be mapped (future commit).
Change-Id: Ifb77a90b593dd3c33cf81b396068e4da1ec5fb1c
This commit removes the secondary cache code implementation from
VM and its usage from libminixfs. It is to be replaced by a new
implementation.
Change-Id: I8fa3af06330e7604c7e0dd4cbe39d3ce353a05b1
. test70: regression test for m_out vfs race condition
The following tests use testcache.c to generate test i/o
patterns, generate random write data and verify the reads.
. test71: blackbox full-stack test of FS operation, testing
using the regular VFS interface crazy i/o patterns
with various working set sizes, triggering only
primary cache, also secondary cache, and finally
disk i/o and verifying contents all the time
. test72: unit test of libminixfs, implementing
functions it needs from -lsys and -lblockdriver
and the client in order to simulate a working
cache client and backend environment.
. test73: blackbox test of secondary vm cache in isolation
Change-Id: I1287e9753182b8719e634917ad158e3c1e079ceb
Variant of utime(2) with struct timespec (with ns precision)
instead of time_t values; also allows for tv_nsec members
the values UTIME_NOW (force update to current time) or
UTIME_OMIT (allow to set either atim or mtim independently.)
Provides a superset of utimes(2), futimes(2), lutimes(2),
and futimens(2).
Provides the same subset of utimensat(2) as does NetBSD 6.
Also import utimens() and lutimeNS() from NetBSD-current.
This files defines two constants which are only used through
sys/syslimits. So they where moved there instead of including the file
and it was removed.
Change-Id: Iba3d220144dddf5d6411a6c66e2f223a1aafb50f
This also adds the sys_settime() kernel call which allows for the adjusting
of the clock named realtime in the kernel. The existing sys_stime()
function is still needed for a separate job (setting the boottime). The
boottime is set in the readclock driver. The sys_settime() interface is
meant to be flexible and will support both clock_settime() and adjtime()
when adjtime() is implemented later.
settimeofday() was adjusted to use the clock_settime() interface.
One side note discovered during testing: uptime(1) (part of the last(1)),
uses wtmp to determine boottime (not Minix's times(2)). This leads `uptime`
to report odd results when you set the time to a time prior to boottime.
This isn't a new bug introduced by my changes. It's been there for a while.
In order to make it more clear that ticks should be used for timers
and realtime should be used for timestamps / displaying the date/time,
getuptime() was renamed to getticks() and getuptime2() was renamed to
getuptime().
Servers, drivers, libraries, tests, etc that use getuptime()/getuptime2()
have been updated. In instances where a realtime was calculated, the
calculation was changed to use realtime.
System calls clock_getres() and clock_gettime() were added to PM/libc.
To use the new SD building script, Linux has to be configured with
loop.max_part=15 on the command line (or set at module load time)
to make the loopback device see the partitions.
This commit removes a lot of differences between the ARM and x86
boot ramdisk and rc scripts. It changes the ARM build from running
from ramdisk to requiring a full filesystem on the SD image and
booting into it.
. ramdisk: remove some arm-only utilities only used for running
from the shell
. remove ARM-only rc.arm, proto.arm.small, ttys and mylogin.sh
boot-time ramdisk files
. change kernel to add "arch" variable so userland knows what
we're running on from sysenv
. make ARM use the regular ramdisk rc file, changed to distinguish
i386-only and ARM-only drivers; requires rootdevname to be set
. change /etc/rc and /usr/etc/rc to start i386-only drivers only on
i386 systems
. change the kernel/arm to have a special case for the memory
driver to load it higher so it can be bigger
. add uEnv.txt, cmdline.txt and a for now highly linux-dependent
SD preparation script arm_sdimage.sh to the git repository in
releasetools/
Change-Id: I68910ba4e96ee80f7a12b65e48b5d39b43ca6397
REQ_PEEK behaves just like REQ_READ except that it does not copy
data anywhere, just obtains the blocks from the FS into the cache.
To be used by the future mmap implementation.
Change-Id: I1b56de304f0a7152b69a72c8962d04258adb44f9
Remove old versions of system calls and system calls that don't have
a libc api interface anymore (dup, dup2, creat).
VFS still contains support for old system call numbers for the new stat
system calls (i.e., 65, 66, 67) to keep supporting old binaries built for
MINIX 3.2.1 (prior to the release).
Change-Id: I721779b58a50c7eeae20669de24658d55d69b25b
Make the frclock functions similar to the tsc utility functions. This
way, we can call frclock functions from the framebuffer driver which
will use frclock on ARM and tsc on X86.
Also, frclock_64_to_micros computed seconds, not microseconds
Change-Id: I6718ae0fb7db050794f6f032205923e1a32dc1ac
This patch introduces a framebuffer to Minix. It's written for the ARM
port of Minix, but has an architectural split that separates the
hardware dependent part from the non-hardware dependent part. Futhermore,
this driver was developed using a screen that has a native resolution of
1024x600 pixels and having lack of support for obtaining EDID from the
screen. Consequently, it uses a hardcoded resolution of 1024x600.
The driver uses an interface based on the Linux ioctl API, but supports
only a very limited subset.
. the total amount of memory in the system didn't include the memory
used by the boot-time modules and some dynamic allocation by the
kernel at boot time (to map in VM). especially apparent on our
ARM board with 'only' 512MB of memory and a huge ramdisk.
. also: *add* the VM loaded module to the freelist after it has
been allocated for & mapped in instead of cutting it *out* of the
freelist! so we get a few more MB free..
Change-Id: If37ac32b21c9d38610830e21421264da4f20bc4f
. allow any number of pde's used for pagedir mapping
. allows >1024 NR_PROCS on x86, >64 on ARM
. allows NR_PROCS to be the same in both cases
. also cleanup: allocating spare PDE's is not necessary
throw that function out
Change-Id: Ibb8f8cf6e7db6a4d6384b6911d1a3f3f5e5d8256
* Generalize GPIO handling.
* Add libs to configure gpio's clocks and pads
* Add Interrupt handling.
* Introduce mmio.h and log.h
Change-Id: I928e4c807d15031de2eede4b3ecff62df795f8ac
The Cycle CouNTer on ARM cannot be used reliably as it wraps around
rather quickly and can be altered by user space (on Minix). Furthermore,
it's buggy when wrapping and is not implemented at all on the Linaro
Beagleboard emulator.
This patch programs GPTIMER10 as a free running clock at 1.625 MHz (it
doesn't generate interrupts). It's memory mapped into every process,
which enables libsys to provide micro_delay().
Change-Id: Iba004c6c62976762fe154ea390d69e518eec1531
Due to the ABI we are using we have to use the earm architecture
moniker for the build system to behave correctly. This involves
then some headers to move around.
There is also a few related Makefile updates as well as minor
source code corrections.
This makes sure the types are coherent, and right now, time_t is
defined as an long, through _BSD_TIME_T_. It previously was
hardcoded as an int, so the structure's size does not change.
Change-Id: If29e94ab53f605d1480fadb540f5b67be4ddaf5b
* Updating common/lib
* Updating lib/csu
* Updating lib/libc
* Updating libexec/ld.elf_so
* Corrected test on __minix in featuretest to actually follow the
meaning of the comment.
* Cleaned up _REENTRANT-related defintions.
* Disabled -D_REENTRANT for libfetch
* Removing some unneeded __NBSD_LIBC defines and tests
Change-Id: Ic1394baef74d11b9f86b312f5ff4bbc3cbf72ce2
. restore state depends on how saving of state was done;
also remember trap style in sig context
. actually set and restore TRACEBIT with new trap styles;
have to remove it once process enters kernel though, done
in debug trap exception handler
. introduce MF_STEP that makes arch-specific code
turn on trace bit instead of setting TRACEBIT directly,
a bit more arch-friendly and avoids keeping precious
state in per-process PSW arch-dependently
- CHOOSETRAP define makes impossible to use some common words
like send, receive and notify in any other context, for
instance as members or structures
- any reasonable compiler inlines the static inline functions so
no extra function call overhead is introduced by this change
- this gets us back to the situation before the SYSCALL/SYSENTER
change. It is not perfect, but it used to work and still does.
upgrade to NetBSD CVS release from 2012/10/17 12:00:00 UTC
Makefiles updates to imporve portability
Made sure to be consistent in the usage of braces/parenthesis at
least on a per file basis. For variables, it is recommended to
continue to use braces.
The tested targets are the followgin ones:
* tools
* distribution
* sets
* release
The remaining NetBSD targets have not been disabled nor tested
*at all*. Try them at your own risk, they may reboot the earth.
For all compliant Makefiles, objects and generated files are put in
MAKEOBJDIR, which means you can now keep objects between two branch
switching. Same for DESTDIR, please refer to build.sh options.
Regarding new or modifications of Makefiles a few things:
* Read share/mk/bsd.README
* If you add a subdirectory, add a Makefile in it, and have it called
by the parent through the SUBDIR variable.
* Do not add arbitrary inclusion which crosses to another branch of
the hierarchy; If you can't do without it, put a comment on why.
If possible, do not use inclusion at all.
* Use as much as possible the infrastructure, it is here to make
life easier, do not fight it.
Sets and package are now used to track files.
We have one set called "minix", composed of one package called "minix-sys"
Bumping libc files for unsupported architectures, to simplify merging.
A bunch of small fixes:
* in libutil update
* the macro in endian.h
* some undefined types due to clear separation from host.
* Fix a warning for cdbr.c
Some modification which were required for the new build system:
* inclusion path for const.h in sconst, still hacky
* Removed default malloc.c which conflicts on some occasions.
. Check if we have the right number of boot modules
. Check if the ELF parsing of VM actually succeeded
Both these are root causes of less-than-obvious other
errors/asserts a little further down the line; uncovered
while experimenting with booting by iPXE, specifically
(a) iPXE having a 8-multiboot-modules limit and
(b) trying to boot a gzipped VM.
Add primary cache management feature to libminixfs as mfs and ext2
currently do separately, remove cache code from mfs and ext2, and make
them use the libminixfs interface. This makes all fields of the buf
struct private to libminixfs and FS clients aren't supposed to access
them at all. Only the opaque 'void *data' field (the FS block contents,
used to be called bp) is to be accessed by the FS client.
The main purpose is to implement the interface to the 2ndary vm cache
just once, get rid of some code duplication, and add a little
abstraction to reduce the code inertia of the whole caching business.
Some minor sanity checking and prohibition done by mfs in this code
as removed from the generic primary cache code as a result:
- checking all inodes are not in use when allocating/resizing
the cache
- checking readonly filesystems aren't written to
- checking the superblock isn't written to on mounted filesystems
The minixfslib code relies on fs_blockstats() in the client filesystem to
return some FS usage information.
Introduce explicit abstractions for different mapping types,
handling the instantiation, forking, pagefaults and freeing of
anonymous memory, direct physical mappings, shared memory and
physically contiguous anonymous memory as separate types, making
region.c more generic.
Also some other genericification like merging the 3 munmap cases
into one.
COW and SMAP safemap code is still implicit in region.c.
. add cpufeature detection of both
. use it for both ipc and kernelcall traps, using a register
for call number
. SYSENTER/SYSCALL does not save any context, therefore userland
has to save it
. to accomodate multiple kernel entry/exit types, the entry
type is recorded in the process struct. hitherto all types
were interrupt (soft int, exception, hard int); now SYSENTER/SYSCALL
is new, with the difference that context is not fully restored
from proc struct when running the process again. this can't be
done as some information is missing.
. complication: cases in which the kernel has to fully change
process context (i.e. sigreturn). in that case the exit type
is changed from SYSENTER/SYSEXIT to soft-int (i.e. iret) and
context is fully restored from the proc struct. this does mean
the PC and SP must change, as the sysenter/sysexit userland code
will otherwise try to restore its own context. this is true in the
sigreturn case.
. override all usage by setting libc_ipc=1
complete munmap implementation; single-page references made
a general munmap() implementation possible to write cleanly.
. memory: let the MIOCRAMSIZE ioctl set the imgrd device
size (but only to 0)
. let the ramdisk command set sizes to 0
. use this command to set /dev/imgrd to 0 after mounting /usr
in /etc/rc, so the boot time ramdisk is freed (about 4MB
currently)
. map all objects named usermapped_*.o with globally visible
pages; usermapped_glo_*.o with the VM 'global' bit on, i.e.
permanently in tlb (very scarce resource!)
. added kinfo, machine, kmessages and loadinfo for a start
. modified log, tty to make use of the shared messages struct
. some strncpy/strcpy to strlcpy conversions
. new <minix/param.h> to avoid including other minix headers
that have colliding definitions with library and commands code,
causing parse warnings
. removed some dead code / assignments
adjust the smp booting procedure for segmentless operation. changes are
mostly due to gdt/idt being dependent on paging, because of the high
location, and paging being on much sooner because of that too.
also smaller fixes: redefine DESC_SIZE, fix kernel makefile variable name
(crosscompiling), some null pointer checks that trap now because of a
sparser pagetable, acpi sanity checking
This commit removes all traces of Minix segments (the text/data/stack
memory map abstraction in the kernel) and significance of Intel segments
(hardware segments like CS, DS that add offsets to all addressing before
page table translation). This ultimately simplifies the memory layout
and addressing and makes the same layout possible on non-Intel
architectures.
There are only two types of addresses in the world now: virtual
and physical; even the kernel and processes have the same virtual
address space. Kernel and user processes can be distinguished at a
glance as processes won't use 0xF0000000 and above.
No static pre-allocated memory sizes exist any more.
Changes to booting:
. The pre_init.c leaves the kernel and modules exactly as
they were left by the bootloader in physical memory
. The kernel starts running using physical addressing,
loaded at a fixed location given in its linker script by the
bootloader. All code and data in this phase are linked to
this fixed low location.
. It makes a bootstrap pagetable to map itself to a
fixed high location (also in linker script) and jumps to
the high address. All code and data then use this high addressing.
. All code/data symbols linked at the low addresses is prefixed by
an objcopy step with __k_unpaged_*, so that that code cannot
reference highly-linked symbols (which aren't valid yet) or vice
versa (symbols that aren't valid any more).
. The two addressing modes are separated in the linker script by
collecting the unpaged_*.o objects and linking them with low
addresses, and linking the rest high. Some objects are linked
twice, once low and once high.
. The bootstrap phase passes a lot of information (e.g. free memory
list, physical location of the modules, etc.) using the kinfo
struct.
. After this bootstrap the low-linked part is freed.
. The kernel maps in VM into the bootstrap page table so that VM can
begin executing. Its first job is to make page tables for all other
boot processes. So VM runs before RS, and RS gets a fully dynamic,
VM-managed address space. VM gets its privilege info from RS as usual
but that happens after RS starts running.
. Both the kernel loading VM and VM organizing boot processes happen
using the libexec logic. This removes the last reason for VM to
still know much about exec() and vm/exec.c is gone.
Further Implementation:
. All segments are based at 0 and have a 4 GB limit.
. The kernel is mapped in at the top of the virtual address
space so as not to constrain the user processes.
. Processes do not use segments from the LDT at all; there are
no segments in the LDT any more, so no LLDT is needed.
. The Minix segments T/D/S are gone and so none of the
user-space or in-kernel copy functions use them. The copy
functions use a process endpoint of NONE to realize it's
a physical address, virtual otherwise.
. The umap call only makes sense to translate a virtual address
to a physical address now.
. Segments-related calls like newmap and alloc_segments are gone.
. All segments-related translation in VM is gone (vir2map etc).
. Initialization in VM is simpler as no moving around is necessary.
. VM and all other boot processes can be linked wherever they wish
and will be mapped in at the right location by the kernel and VM
respectively.
Other changes:
. The multiboot code is less special: it does not use mb_print
for its diagnostics any more but uses printf() as normal, saving
the output into the diagnostics buffer, only printing to the
screen using the direct print functions if a panic() occurs.
. The multiboot code uses the flexible 'free memory map list'
style to receive the list of free memory if available.
. The kernel determines the memory layout of the processes to
a degree: it tells VM where the kernel starts and ends and
where the kernel wants the top of the process to be. VM then
uses this entire range, i.e. the stack is right at the top,
and mmap()ped bits of memory are placed below that downwards,
and the break grows upwards.
Other Consequences:
. Every process gets its own page table as address spaces
can't be separated any more by segments.
. As all segments are 0-based, there is no distinction between
virtual and linear addresses, nor between userspace and
kernel addresses.
. Less work is done when context switching, leading to a net
performance increase. (8% faster on my machine for 'make servers'.)
. The layout and configuration of the GDT makes sysenter and syscall
possible.
. sys_vircopy always uses D for both src and dst
. sys_physcopy uses PHYS_SEG if and only if corresponding
endpoint is NONE, so we can derive the mode (PHYS_SEG or D)
from the endpoint arg in the kernel, dropping the seg args
. fields in msg still filled in for backwards compatability,
using same NONE-logic in the library
. all invocations were S or D, so can safely be dropped
to prepare for the segmentless world
. still assign D to the SCP_SEG field in the message
to make previous kernels usable
. new mode for sys_memset: include process so memset can be
done in physical or virtual address space.
. add a mode to mmap() that lets a process allocate uninitialized
memory.
. this allows an exec()er (RS, VFS, etc.) to request uninitialized
memory from VM and selectively clear the ranges that don't come
from a file, leaving no uninitialized memory left for the process
to see.
. use callbacks for clearing the process, clearing memory in the
process, and copying into the process; so that the libexec code
can be used from rs, vfs, and in the future, kernel (to load vm)
and vm (to load boot-time processes)
. make exec() callers (i.e. vfs and rs) determine the
memory layout by explicitly reserving regions using
mmap() calls on behalf of the exec()ing process,
i.e. handling all of the exec logic, thereby eliminating
all special exec() knowledge from VM.
. the new procedure is: clear the exec()ing process
first, then call third-party mmap()s to reserve memory, then
copy the executable file section contents in, all using callbacks
tailored to the caller's way of starting an executable
. i.e. no more explicit EXEC_NEWMEM-style calls in PM or VM
as with rigid 2-section arguments
. this naturally allows generalizing exec() by simply loading
all ELF sections
. drop/merge of lots of duplicate exec() code into libexec
. not copying the code sections to vfs and into the executable
again is a measurable performance improvement (about 3.3% faster
for 'make' in src/servers/)
these two functions will be used to support all exec() functionality
going into a single library shared by RS and VFS and exec() knowledge
leaving VM.
. third-party mmap: allow certain processes (VFS, RS) to
do mmap() on behalf of another process
. PROCCTL: used to free and clear a process' address space
. readbios call is now a physical copy with range check in
the kernel call instead of BIOS_SEG+umap_bios
. requires all access to physical memory in bios range to go
through sys_readbios
. drivers/dpeth: wasn't using it
. adjusted printer
According to POSIX the st_size field of struct stat is undefined for
fifos and anonymous pipes. Thus we can do anything we want. We save a
copy by not being accurate on pipe sizes.
. vfs: pass execname in aux vectors
. ld.elf_so: use this to expand $ORIGIN
. this requires the executable to reserve more
space at exec() calling time
. generalize libexec slightly to get some more necessary information
from ELF files, e.g. the interpreter
. execute dynamically linked executables when exec()ed by VFS
. switch to netbsd variant of elf32.h exclusively, solves some
conflicting headers
. file- and functionality-compatible with previous situation
(FreeBSD csu) (with a crt1.o -> crt0.o symlink in /usr/lib)
. harmonizes source with netbsd
. harmonizes linker invocation (e.g. clang) with netbsd
. helpful to get some arm code in there for the arm port project
This Shared Folders File System library (libsffs) now contains all the
file system logic originally in HGFS. The actual HGFS server code is
now a stub that passes on all the work to libsffs. The libhgfs library
is changed accordingly.
. common/include/arch/i386 is not actually an imported
sys/arch/i386/include but leftover Minix files;
remove and move to include/
. move include/ufs to sys/ufs, where it came from, now that
we have a sys/ hierarchy
. move mdocml/ to external/bsd/, now we have that
. single sys/arch/i386/stand/ import for boot stuff
- libnetsock - internal implementation of a socket on the lwip
server side. it encapsulates the asynchronous protocol
- lwip server - uses libnetsock to work with the asynchronous
protocol
- if an operation (R, W, IOCTL) is non blocking, a flag is set
and sent to the device.
- nothing changes for sync devices
- asyn devices should reply asap if an operation is non-blocking.
We must trust the devices, but we had to trust them anyway to
reply to CANCEL correctly
- we safe sending CANCEL commands to asyn devices. This greatly
simplifies the protocol. Asynchronous devices can always reply
when a reply is ready and do not need to deal with other
situations
- currently, none of our drivers use the flags since they drive
virtual devices which do not block
There is important information about booting non-ack images in
docs/UPDATING. ack/aout-format images can't be built any more, and
booting clang/ELF-format ones is a little different. Updating to the
new boot monitor is recommended.
Changes in this commit:
. drop boot monitor -> allowing dropping ack support
. facility to copy ELF boot files to /boot so that old boot monitor
can still boot fairly easily, see UPDATING
. no more ack-format libraries -> single-case libraries
. some cleanup of OBJECT_FMT, COMPILER_TYPE, etc cases
. drop several ack toolchain commands, but not all support
commands (e.g. aal is gone but acksize is not yet).
. a few libc files moved to netbsd libc dir
. new /bin/date as minix date used code in libc/
. test compile fix
. harmonize includes
. /usr/lib is no longer special: without ack, /usr/lib plays no
kind of special bootstrapping role any more and bootstrapping
is done exclusively through packages, so releases depend even
less on the state of the machine making them now.
. rename nbsd_lib* to lib*
. reduce mtree
. rc script and service know to look in /usr/pkg/.. for
extra binaries and conf files
. service split into parsing config and doing RS request
so that a new utility (printconfig) can just print the
config in machine-parseable format for netconf integration
. converted all base system eth drivers/netconf
Import libpuffs and our port of libpuffs. The port was done as part of
GSoC 2011 FUSE project, done by Evgeniy Ivanov. The librefuse import
did not require any porting efforts. Libpuffs has been modified to
understand our VFS-FS protocol and translate between that and PUFFS. As
an example that it works, fuse-ntfs-3g from pkgsrc can be compiled and
used to mount ntfs partitions:
mount -t ntfs-3g <device> <mountpoint>
FUSE only works with the asynchronous version of VFS. See <docs/UPDATING> on
how to run AVFS.
This patch further includes some changes to mount(1) and mount(2) so it's
possible to use file systems provided by pkgsrc (note: manual modifications
to /etc/system.conf are still needed. There has been made an exception for
fuse-ntfs-3g, so it already as an entry).
This patch fixes most of current reasons to generate compiler warnings.
The changes consist of:
- adding missing casts
- hiding or unhiding function declarations
- including headers where missing
- add __UNCONST when assigning a const char * to a char *
- adding missing return statements
- changing some types from unsigned to signed, as the code seems to want
signed ints
- converting old-style function definitions to current style (i.e.,
void func(param1, param2) short param1, param2; {...} to
void func (short param1, short param2) {...})
- making the compiler silent about signed vs unsigned comparisons. We
have too many of those in the new libc to fix.
A number of bugs in the test set were fixed. These bugs were never
triggered with our old libc. Consequently, these tests are now forced to
link with the new libc or they will generate errors (in particular tests 43
and 55).
Most changes in NetBSD libc are limited to moving aroudn "#ifndef __minix"
or stuff related to Minix-specific things (code in sys-minix or gen/minix).
. move cache size heuristic from mfs there
so mfs and ext2 can share it
. add vfs credentials retrieving function, with
backwards compatability from previous struct
format, to be used by both ext2 and mfs
. fix for ext2 - STATICINIT was fed no.
of bytes instead of no. of elements, overallocating
memory by a megabyte or two for the superblock
. move mfs-specific struct, constants to mfs/, so
mfs-specific, on-disk format structs and consts are
fully isolated from generic structs and functions
. removes de and readfs utils
. it's a good extra interface to have but doesn't
meet standardised functionality
. applications (in pkgsrc) find it and expect
full functionality the minix mmap doesn't offter
. on the whole probably better to hide these functions
(mmap and friends) until they are grown up; the base system
can use the new minix_* names
. MAP_SHARED was used to implement sysv shared memory
. used to signal shareable memory region to VM
. assumptions about this situation break when processes
use MAP_SHARED for its normal, standardised meaning
* VFS and installed MFSes must be in sync before and after this change *
Use struct stat from NetBSD. It requires adding new STAT, FSTAT and LSTAT
syscalls. Libc modification is both backward and forward compatible.
Also new struct stat uses modern field sizes to avoid ABI
incompatibility, when we update uid_t, gid_t and company.
Exceptions are ino_t and off_t in old libc (though paddings added).
1. ack, a.out, minix headers (moved to /usr/include.ack),
minix libc
2. gcc/clang, elf, netbsd headers (moved to /usr/include),
netbsd libc (moved to /usr/lib)
So this obsoletes the /usr/netbsd hierarchy.
No special invocation for netbsd libc necessary - it's always used
for gcc/clang.
. remove a few asserts in the kernel and 64bi library
that are not compatible with the timing code
. change the TIME_BLOCKS code a little to work in-kernel
This patch moves more includes (most of them, to tell the truth) to
common/include directory. This completes the list of includes needed
to compile current trunk with the new libc (but to do that you need
more patches in queue).
This patch also contains some modification (for compilation with new
headers) to the common includes under __NBSD_LIBC, the define used
in mk script to specialize compilation with new includes.
This patch moves further includes (the network part and lib.h) in common/.
It is the last part to get the netbsd libc to compile under minix. Further moves will be needed as we get the netbsd libc to compile minix itself.
Also, this patch add #ifndef's to termios.h, as it create problems with netbsd's namespace.h.
Headers that will be shared between old includes and NetBSD-like includes
are moved into common/include tree. They are still copied in /usr/include
in 'make includes', so compilation and programs aren't be affected.
M include/Makefile
A include/minix/input.h
M include/minix/com.h
M drivers/tty/keyboard.c
M drivers/tty/tty.c
M drivers/tty/tty.h
M include/minix/syslib.h
M lib/libsys/Makefile
A lib/libsys/input.c
- kernel maintains a cpu_info array which contains various
information about each cpu as filled when each cpu boots
- the information contains idetification, features etc.
- every pci device which implements _PRT acpi method is considered to
be a pci-to-pci bridge
- acpi driver constructs a hierarchy of pci-to-pci bridges
- when pci driver identifies a pci-to-pci bridge it tells acpi driver
what is the primary and the secondary bus for this device
- when pci requests IRQ routing information from acpi, it passes the
bus number too to be able to identify the device accurately
With this change, suggested by Gautam Tirumala, ports for pkgin and
pkg_install are cleaner and so easier to upstream. Presumably other
ports will be smoother too.
There doesn't seem to be a reason SSIZE_MAX was so small to begin with.
Before, the 'main thread' of a process was never taken into account anywhere in
the library, causing mutexes not to work properly (and consequently, neither
did the condition variables). For example, if the 'main thread' (that is, the
thread which is started at the beginning of a process; not a spawned thread by
the library) would lock a mutex, it wasn't actually locked.
- sometimes the system needs to know precisely on what type of cpu is
running. The cpu type id detected during arch specific
initialization and kept in the machine structure for later use.
- as a side-effect the information is exported to userland
- profile --nmi | --rtc sets the profiling mode
- --rtc is default, uses BIOS RTC, cannot profile kernel the presetted
frequency values apply
- --nmi is only available in APIC mode as it uses the NMI watchdog, -f
allows any frequency in Hz
- both modes use compatible data structures
- when kernel profiles a process for the first time it saves an entry
describing the process [endpoint|name]
- every profile sample is only [endpoint|pc]
- profile utility creates a table of endpoint <-> name relations and
translates endpoints of samples into names and writing out the
results to comply with the processing tools
- "task" endpoints like KERNEL are negative thus we must cast it to
unsigned when hashing