minix/kernel/system/do_trace.c

207 lines
6.2 KiB
C
Raw Normal View History

/* The kernel call implemented in this file:
2005-04-21 16:53:53 +02:00
* m_type: SYS_TRACE
*
* The parameters for this kernel call are:
* m_lsys_krn_sys_trace.endpt process that is traced
* m_lsys_krn_sys_trace.request trace request
* m_lsys_krn_sys_trace.address address at traced process' space
* m_lsys_krn_sys_trace.data data to be written
* m_krn_lsys_sys_trace.data data to be returned
2005-04-21 16:53:53 +02:00
*/
2010-04-02 00:22:33 +02:00
#include "kernel/system.h"
2005-04-21 16:53:53 +02:00
#include <sys/ptrace.h>
#if USE_TRACE
2005-04-21 16:53:53 +02:00
/*==========================================================================*
* do_trace *
*==========================================================================*/
2012-03-25 20:25:53 +02:00
int do_trace(struct proc * caller, message * m_ptr)
2005-04-21 16:53:53 +02:00
{
/* Handle the debugging commands supported by the ptrace system call
* The commands are:
* T_STOP stop the process
* T_OK enable tracing by parent for this process
* T_GETINS return value from instruction space
* T_GETDATA return value from data space
* T_GETUSER return value from user process table
* T_SETINS set value in instruction space
* T_SETDATA set value in data space
2005-04-21 16:53:53 +02:00
* T_SETUSER set value in user process table
* T_RESUME resume execution
* T_EXIT exit
* T_STEP set trace bit
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
* T_SYSCALL trace system call
* T_ATTACH attach to an existing process
* T_DETACH detach from a traced process
* T_SETOPT set trace options
* T_GETRANGE get range of values
* T_SETRANGE set range of values
2005-04-21 16:53:53 +02:00
*
* The T_OK, T_ATTACH, T_EXIT, and T_SETOPT commands are handled completely by
* the process manager. T_GETRANGE and T_SETRANGE use sys_vircopy(). All others
* come here.
2005-04-21 16:53:53 +02:00
*/
register struct proc *rp;
vir_bytes tr_addr = m_ptr->m_lsys_krn_sys_trace.address;
long tr_data = m_ptr->m_lsys_krn_sys_trace.data;
int tr_request = m_ptr->m_lsys_krn_sys_trace.request;
int tr_proc_nr_e = m_ptr->m_lsys_krn_sys_trace.endpt, tr_proc_nr;
unsigned char ub;
2005-04-21 16:53:53 +02:00
int i;
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
#define COPYTOPROC(addr, myaddr, length) { \
struct vir_addr fromaddr, toaddr; \
2009-04-02 13:38:23 +02:00
int r; \
fromaddr.proc_nr_e = KERNEL; \
toaddr.proc_nr_e = tr_proc_nr_e; \
fromaddr.offset = (myaddr); \
toaddr.offset = (addr); \
if((r=virtual_copy_vmcheck(caller, &fromaddr, \
&toaddr, length)) != OK) { \
2009-04-02 13:38:23 +02:00
printf("Can't copy in sys_trace: %d\n", r);\
return r;\
} \
}
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
#define COPYFROMPROC(addr, myaddr, length) { \
struct vir_addr fromaddr, toaddr; \
2009-04-02 13:38:23 +02:00
int r; \
fromaddr.proc_nr_e = tr_proc_nr_e; \
toaddr.proc_nr_e = KERNEL; \
fromaddr.offset = (addr); \
toaddr.offset = (myaddr); \
if((r=virtual_copy_vmcheck(caller, &fromaddr, \
&toaddr, length)) != OK) { \
2009-04-02 13:38:23 +02:00
printf("Can't copy in sys_trace: %d\n", r);\
return r;\
} \
}
'proc number' is process slot, 'endpoint' are generation-aware process instance numbers, encoded and decoded using macros in <minix/endpoint.h>. proc number -> endpoint migration . proc_nr in the interrupt hook is now an endpoint, proc_nr_e. . m_source for messages and notifies is now an endpoint, instead of proc number. . isokendpt() converts an endpoint to a process number, returns success (but fails if the process number is out of range, the process slot is not a living process, or the given endpoint number does not match the endpoint number in the process slot, indicating an old process). . okendpt() is the same as isokendpt(), but panic()s if the conversion fails. This is mainly used for decoding message.m_source endpoints, and other endpoint numbers in kernel data structures, which should always be correct. . if DEBUG_ENABLE_IPC_WARNINGS is enabled, isokendpt() and okendpt() get passed the __FILE__ and __LINE__ of the calling lines, and print messages about what is wrong with the endpoint number (out of range proc, empty proc, or inconsistent endpoint number), with the caller, making finding where the conversion failed easy without having to include code for every call to print where things went wrong. Sometimes this is harmless (wrong arg to a kernel call), sometimes it's a fatal internal inconsistency (bogus m_source). . some process table fields have been appended an _e to indicate it's become and endpoint. . process endpoint is stored in p_endpoint, without generation number. it turns out the kernel never needs the generation number, except when fork()ing, so it's decoded then. . kernel calls all take endpoints as arguments, not proc numbers. the one exception is sys_fork(), which needs to know in which slot to put the child.
2006-03-03 11:00:02 +01:00
if(!isokendpt(tr_proc_nr_e, &tr_proc_nr)) return(EINVAL);
if (iskerneln(tr_proc_nr)) return(EPERM);
2005-04-21 16:53:53 +02:00
rp = proc_addr(tr_proc_nr);
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
if (isemptyp(rp)) return(EINVAL);
2005-04-21 16:53:53 +02:00
switch (tr_request) {
case T_STOP: /* stop process */
RTS_SET(rp, RTS_P_STOP);
/* clear syscall trace and single step flags */
rp->p_misc_flags &= ~(MF_SC_TRACE | MF_STEP);
2005-04-21 16:53:53 +02:00
return(OK);
case T_GETINS: /* return value from instruction space */
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYFROMPROC(tr_addr, (vir_bytes) &tr_data, sizeof(long));
m_ptr->m_lsys_krn_sys_trace.data = tr_data;
break;
2005-04-21 16:53:53 +02:00
case T_GETDATA: /* return value from data space */
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYFROMPROC(tr_addr, (vir_bytes) &tr_data, sizeof(long));
m_ptr->m_lsys_krn_sys_trace.data= tr_data;
2005-04-21 16:53:53 +02:00
break;
case T_GETUSER: /* return value from process table */
if ((tr_addr & (sizeof(long) - 1)) != 0) return(EFAULT);
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
if (tr_addr <= sizeof(struct proc) - sizeof(long)) {
m_ptr->m_lsys_krn_sys_trace.data = *(long *) ((char *) rp + (int) tr_addr);
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
break;
}
/* The process's proc struct is followed by its priv struct.
* The alignment here should be unnecessary, but better safe..
*/
i = sizeof(long) - 1;
tr_addr -= (sizeof(struct proc) + i) & ~i;
if (tr_addr > sizeof(struct priv) - sizeof(long)) return(EFAULT);
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
m_ptr->m_lsys_krn_sys_trace.data = *(long *) ((char *) rp->p_priv + (int) tr_addr);
2005-04-21 16:53:53 +02:00
break;
case T_SETINS: /* set value in instruction space */
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYTOPROC(tr_addr, (vir_bytes) &tr_data, sizeof(long));
m_ptr->m_krn_lsys_sys_trace.data = 0;
break;
2005-04-21 16:53:53 +02:00
case T_SETDATA: /* set value in data space */
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYTOPROC(tr_addr, (vir_bytes) &tr_data, sizeof(long));
m_ptr->m_krn_lsys_sys_trace.data = 0;
2005-04-21 16:53:53 +02:00
break;
case T_SETUSER: /* set value in process table */
if ((tr_addr & (sizeof(reg_t) - 1)) != 0 ||
tr_addr > sizeof(struct stackframe_s) - sizeof(reg_t))
return(EFAULT);
2005-04-21 16:53:53 +02:00
i = (int) tr_addr;
#if defined(__i386__)
2005-04-21 16:53:53 +02:00
/* Altering segment registers might crash the kernel when it
* tries to load them prior to restarting a process, so do
* not allow it.
*/
if (i == (int) &((struct proc *) 0)->p_reg.cs ||
i == (int) &((struct proc *) 0)->p_reg.ds ||
i == (int) &((struct proc *) 0)->p_reg.es ||
i == (int) &((struct proc *) 0)->p_reg.gs ||
i == (int) &((struct proc *) 0)->p_reg.fs ||
i == (int) &((struct proc *) 0)->p_reg.ss)
return(EFAULT);
2005-04-21 16:53:53 +02:00
if (i == (int) &((struct proc *) 0)->p_reg.psw)
/* only selected bits are changeable */
SETPSW(rp, tr_data);
else
*(reg_t *) ((char *) &rp->p_reg + i) = (reg_t) tr_data;
#elif defined(__arm__)
if (i == (int) &((struct proc *) 0)->p_reg.psr) {
/* only selected bits are changeable */
SET_USR_PSR(rp, tr_data);
} else {
*(reg_t *) ((char *) &rp->p_reg + i) = (reg_t) tr_data;
}
2012-10-08 03:38:03 +02:00
#endif
m_ptr->m_krn_lsys_sys_trace.data = 0;
2005-04-21 16:53:53 +02:00
break;
case T_DETACH: /* detach tracer */
rp->p_misc_flags &= ~MF_SC_ACTIVE;
/* fall through */
2005-04-21 16:53:53 +02:00
case T_RESUME: /* resume execution */
RTS_UNSET(rp, RTS_P_STOP);
m_ptr->m_krn_lsys_sys_trace.data = 0;
2005-04-21 16:53:53 +02:00
break;
case T_STEP: /* set trace bit */
rp->p_misc_flags |= MF_STEP;
RTS_UNSET(rp, RTS_P_STOP);
m_ptr->m_krn_lsys_sys_trace.data = 0;
2005-04-21 16:53:53 +02:00
break;
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
case T_SYSCALL: /* trace system call */
rp->p_misc_flags |= MF_SC_TRACE;
RTS_UNSET(rp, RTS_P_STOP);
m_ptr->m_krn_lsys_sys_trace.data = 0;
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
break;
case T_READB_INS: /* get value from instruction space */
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYFROMPROC(tr_addr, (vir_bytes) &ub, 1);
m_ptr->m_krn_lsys_sys_trace.data = ub;
break;
case T_WRITEB_INS: /* set value in instruction space */
ub = (unsigned char) (tr_data & 0xff);
No more intel/minix segments. This commit removes all traces of Minix segments (the text/data/stack memory map abstraction in the kernel) and significance of Intel segments (hardware segments like CS, DS that add offsets to all addressing before page table translation). This ultimately simplifies the memory layout and addressing and makes the same layout possible on non-Intel architectures. There are only two types of addresses in the world now: virtual and physical; even the kernel and processes have the same virtual address space. Kernel and user processes can be distinguished at a glance as processes won't use 0xF0000000 and above. No static pre-allocated memory sizes exist any more. Changes to booting: . The pre_init.c leaves the kernel and modules exactly as they were left by the bootloader in physical memory . The kernel starts running using physical addressing, loaded at a fixed location given in its linker script by the bootloader. All code and data in this phase are linked to this fixed low location. . It makes a bootstrap pagetable to map itself to a fixed high location (also in linker script) and jumps to the high address. All code and data then use this high addressing. . All code/data symbols linked at the low addresses is prefixed by an objcopy step with __k_unpaged_*, so that that code cannot reference highly-linked symbols (which aren't valid yet) or vice versa (symbols that aren't valid any more). . The two addressing modes are separated in the linker script by collecting the unpaged_*.o objects and linking them with low addresses, and linking the rest high. Some objects are linked twice, once low and once high. . The bootstrap phase passes a lot of information (e.g. free memory list, physical location of the modules, etc.) using the kinfo struct. . After this bootstrap the low-linked part is freed. . The kernel maps in VM into the bootstrap page table so that VM can begin executing. Its first job is to make page tables for all other boot processes. So VM runs before RS, and RS gets a fully dynamic, VM-managed address space. VM gets its privilege info from RS as usual but that happens after RS starts running. . Both the kernel loading VM and VM organizing boot processes happen using the libexec logic. This removes the last reason for VM to still know much about exec() and vm/exec.c is gone. Further Implementation: . All segments are based at 0 and have a 4 GB limit. . The kernel is mapped in at the top of the virtual address space so as not to constrain the user processes. . Processes do not use segments from the LDT at all; there are no segments in the LDT any more, so no LLDT is needed. . The Minix segments T/D/S are gone and so none of the user-space or in-kernel copy functions use them. The copy functions use a process endpoint of NONE to realize it's a physical address, virtual otherwise. . The umap call only makes sense to translate a virtual address to a physical address now. . Segments-related calls like newmap and alloc_segments are gone. . All segments-related translation in VM is gone (vir2map etc). . Initialization in VM is simpler as no moving around is necessary. . VM and all other boot processes can be linked wherever they wish and will be mapped in at the right location by the kernel and VM respectively. Other changes: . The multiboot code is less special: it does not use mb_print for its diagnostics any more but uses printf() as normal, saving the output into the diagnostics buffer, only printing to the screen using the direct print functions if a panic() occurs. . The multiboot code uses the flexible 'free memory map list' style to receive the list of free memory if available. . The kernel determines the memory layout of the processes to a degree: it tells VM where the kernel starts and ends and where the kernel wants the top of the process to be. VM then uses this entire range, i.e. the stack is right at the top, and mmap()ped bits of memory are placed below that downwards, and the break grows upwards. Other Consequences: . Every process gets its own page table as address spaces can't be separated any more by segments. . As all segments are 0-based, there is no distinction between virtual and linear addresses, nor between userspace and kernel addresses. . Less work is done when context switching, leading to a net performance increase. (8% faster on my machine for 'make servers'.) . The layout and configuration of the GDT makes sysenter and syscall possible.
2012-05-07 16:03:35 +02:00
COPYTOPROC(tr_addr, (vir_bytes) &ub, 1);
m_ptr->m_krn_lsys_sys_trace.data = 0;
break;
2005-04-21 16:53:53 +02:00
default:
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
return(EINVAL);
2005-04-21 16:53:53 +02:00
}
return(OK);
}
#endif /* USE_TRACE */