2005-06-01 11:37:52 +02:00
|
|
|
#ifndef DEBUG_H
|
|
|
|
#define DEBUG_H
|
|
|
|
|
2005-07-14 17:12:12 +02:00
|
|
|
/* This header file defines all debugging constants and macros, and declares
|
|
|
|
* some variables. Certain debugging features redefine standard constants
|
|
|
|
* and macros. Therefore, this header file should be included after the
|
|
|
|
* other kernel headers.
|
|
|
|
*/
|
2005-06-01 11:37:52 +02:00
|
|
|
|
2006-05-11 16:49:46 +02:00
|
|
|
#include <ansi.h>
|
Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
|
|
|
#include <minix/debug.h>
|
2005-07-14 17:12:12 +02:00
|
|
|
#include "config.h"
|
|
|
|
|
2005-10-18 18:13:12 +02:00
|
|
|
/* Enable prints such as
|
|
|
|
* . send/receive failed due to deadlock or dead source or dead destination
|
|
|
|
* . trap not allowed
|
|
|
|
* . bogus message pointer
|
|
|
|
* . kernel call number not allowed by this process
|
|
|
|
*
|
|
|
|
* Of course the call still fails, but nothing is printed if these warnings
|
|
|
|
* are disabled.
|
|
|
|
*/
|
2009-04-17 15:46:37 +02:00
|
|
|
#define DEBUG_ENABLE_IPC_WARNINGS 1
|
2006-06-29 15:35:27 +02:00
|
|
|
#define DEBUG_STACKTRACE 1
|
2008-11-19 13:26:10 +01:00
|
|
|
#define DEBUG_TIME_LOCKS 1
|
2005-10-18 18:13:12 +02:00
|
|
|
|
2010-03-10 14:00:05 +01:00
|
|
|
/* Sanity checks. */
|
|
|
|
#define DEBUG_SANITYCHECKS 0
|
|
|
|
|
|
|
|
/* Verbose messages. */
|
Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
|
|
|
#define DEBUG_TRACE 0
|
|
|
|
|
2010-05-08 20:00:03 +02:00
|
|
|
/* DEBUG_RACE makes every process preemptible, schedules
|
|
|
|
* every process on the same priority queue, and randomizes
|
|
|
|
* the next process to run, in order to help catch race
|
|
|
|
* conditions that could otherwise be masked.
|
|
|
|
*/
|
|
|
|
#define DEBUG_RACE 0
|
|
|
|
|
Primary goal for these changes is:
- no longer have kernel have its own page table that is loaded
on every kernel entry (trap, interrupt, exception). the primary
purpose is to reduce the number of required reloads.
Result:
- kernel can only access memory of process that was running when
kernel was entered
- kernel must be mapped into every process page table, so traps to
kernel keep working
Problem:
- kernel must often access memory of arbitrary processes (e.g. send
arbitrary processes messages); this can't happen directly any more;
usually because that process' page table isn't loaded at all, sometimes
because that memory isn't mapped in at all, sometimes because it isn't
mapped in read-write.
So:
- kernel must be able to map in memory of any process, in its own
address space.
Implementation:
- VM and kernel share a range of memory in which addresses of
all page tables of all processes are available. This has two purposes:
. Kernel has to know what data to copy in order to map in a range
. Kernel has to know where to write the data in order to map it in
That last point is because kernel has to write in the currently loaded
page table.
- Processes and kernel are separated through segments; kernel segments
haven't changed.
- The kernel keeps the process whose page table is currently loaded
in 'ptproc.'
- If it wants to map in a range of memory, it writes the value of the
page directory entry for that range into the page directory entry
in the currently loaded map. There is a slot reserved for such
purposes. The kernel can then access this memory directly.
- In order to do this, its segment has been increased (and the
segments of processes start where it ends).
- In the pagefault handler, detect if the kernel is doing
'trappable' memory access (i.e. a pagefault isn't a fatal
error) and if so,
- set the saved instruction pointer to phys_copy_fault,
breaking out of phys_copy
- set the saved eax register to the address of the page
fault, both for sanity checking and for checking in
which of the two ranges that phys_copy was called
with the fault occured
- Some boot-time processes do not have their own page table,
and are mapped in with the kernel, and separated with
segments. The kernel detects this using HASPT. If such a
process has to be scheduled, any page table will work and
no page table switch is done.
Major changes in kernel are
- When accessing user processes memory, kernel no longer
explicitly checks before it does so if that memory is OK.
It simply makes the mapping (if necessary), tries to do the
operation, and traps the pagefault if that memory isn't present;
if that happens, the copy function returns EFAULT.
So all of the CHECKRANGE_OR_SUSPEND macros are gone.
- Kernel no longer has to copy/read and parse page tables.
- A message copying optimisation: when messages are copied, and
the recipient isn't mapped in, they are copied into a buffer
in the kernel. This is done in QueueMess. The next time
the recipient is scheduled, this message is copied into
its memory. This happens in schedcheck().
This eliminates the mapping/copying step for messages, and makes
it easier to deliver messages. This eliminates soft_notify.
- Kernel no longer creates a page table at all, so the vm_setbuf
and pagetable writing in memory.c is gone.
Minor changes in kernel are
- ipc_stats thrown out, wasn't used
- misc flags all renamed to MF_*
- NOREC_* macros to enter and leave functions that should not
be called recursively; just sanity checks really
- code to fully decode segment selectors and descriptors
to print on exceptions
- lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
|
|
|
#if DEBUG_TRACE
|
|
|
|
|
|
|
|
#define VF_SCHEDULING (1L << 1)
|
|
|
|
#define VF_PICKPROC (1L << 2)
|
|
|
|
|
|
|
|
#define TRACE(code, statement) if(verboseflags & code) { printf("%s:%d: ", __FILE__, __LINE__); statement }
|
|
|
|
|
|
|
|
#else
|
|
|
|
#define TRACE(code, statement)
|
|
|
|
#endif
|
|
|
|
|
2010-01-14 10:46:16 +01:00
|
|
|
#define NOT_REACHABLE do { \
|
2010-03-05 16:05:11 +01:00
|
|
|
panic("NOT_REACHABLE at %s:%d", __FILE__, __LINE__); \
|
2009-09-22 23:46:47 +02:00
|
|
|
for(;;); \
|
|
|
|
} while(0)
|
|
|
|
|
2009-11-16 22:41:44 +01:00
|
|
|
#define NOT_IMPLEMENTED do { \
|
2010-03-05 16:05:11 +01:00
|
|
|
panic("NOT_IMPLEMENTED at %s:%d", __FILE__, __LINE__); \
|
2009-11-16 22:41:44 +01:00
|
|
|
} while(0)
|
|
|
|
|
|
|
|
#ifdef CONFIG_BOOT_VERBOSE
|
|
|
|
#define BOOT_VERBOSE(x) x
|
|
|
|
#else
|
|
|
|
#define BOOT_VERBOSE(x)
|
|
|
|
#endif
|
|
|
|
|
2010-02-13 23:11:16 +01:00
|
|
|
#ifdef _SYSTEM
|
|
|
|
#define DEBUG_PRINT(params, level) do { \
|
2010-03-03 16:45:01 +01:00
|
|
|
if (verboseboot >= (level)) printf params; } while (0)
|
2010-02-13 23:11:16 +01:00
|
|
|
#define DEBUGBASIC(params) DEBUG_PRINT(params, VERBOSEBOOT_BASIC)
|
2010-05-10 20:07:59 +02:00
|
|
|
#define DEBUGEXTRA(params) DEBUG_PRINT(params, VERBOSEBOOT_EXTRA)
|
2010-02-13 23:11:16 +01:00
|
|
|
#define DEBUGMAX(params) DEBUG_PRINT(params, VERBOSEBOOT_MAX)
|
|
|
|
#endif
|
|
|
|
|
2005-07-14 17:12:12 +02:00
|
|
|
#endif /* DEBUG_H */
|