minix/kernel/arch/i386/arch_system.c

761 lines
16 KiB
C
Raw Normal View History

Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
/* system dependent functions for use inside the whole kernel. */
2010-04-02 00:22:33 +02:00
#include "kernel/kernel.h"
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include <unistd.h>
#include <ctype.h>
#include <string.h>
#include <machine/cmos.h>
#include <machine/bios.h>
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include <minix/portio.h>
#include <minix/cpufeature.h>
#include <assert.h>
#include <signal.h>
#include <machine/vm.h>
#include <minix/u64.h>
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include "archconst.h"
#include "arch_proto.h"
#include "serial.h"
#include "oxpcie.h"
2010-04-02 00:22:33 +02:00
#include "kernel/proc.h"
#include "kernel/debug.h"
#include "mb_utils.h"
#include <machine/multiboot.h>
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#include "glo.h"
2011-07-31 16:20:34 +02:00
#ifdef USE_APIC
#include "apic.h"
#endif
2011-07-31 16:20:34 +02:00
#ifdef USE_ACPI
#include "acpi.h"
2011-07-31 16:20:34 +02:00
#endif
2012-03-25 20:25:53 +02:00
static int osfxsr_feature; /* FXSAVE/FXRSTOR instructions support (SSEx) */
extern __dead void poweroff_jmp();
extern void poweroff16();
extern void poweroff16_end();
/* set MP and NE flags to handle FPU exceptions in native mode. */
#define CR0_MP_NE 0x0022
/* set CR4.OSFXSR[bit 9] if FXSR is supported. */
#define CR4_OSFXSR (1L<<9)
/* set OSXMMEXCPT[bit 10] if we provide #XM handler. */
#define CR4_OSXMMEXCPT (1L<<10)
2012-03-25 20:25:53 +02:00
void * k_stacks;
2012-03-25 20:25:53 +02:00
static void ser_debug(int c);
#ifdef CONFIG_SMP
2012-03-25 20:25:53 +02:00
static void ser_dump_proc_cpu(void);
#endif
#if !CONFIG_OXPCIE
2012-03-25 20:25:53 +02:00
static void ser_init(void);
#endif
#define KBCMDP 4 /* kbd controller port (O) */
#define KBC_PULSE0 0xfe /* pulse output bit 0 */
#define IO_KBD 0x060 /* 8042 Keyboard */
void
reset(void)
{
uint8_t b;
/*
* The keyboard controller has 4 random output pins, one of which is
* connected to the RESET pin on the CPU in many PCs. We tell the
* keyboard controller to pulse this line a couple of times.
*/
outb(IO_KBD + KBCMDP, KBC_PULSE0);
busy_delay_ms(100);
outb(IO_KBD + KBCMDP, KBC_PULSE0);
busy_delay_ms(100);
/*
* Attempt to force a reset via the Reset Control register at
* I/O port 0xcf9. Bit 2 forces a system reset when it
* transitions from 0 to 1. Bit 1 selects the type of reset
* to attempt: 0 selects a "soft" reset, and 1 selects a
* "hard" reset. We try a "hard" reset. The first write sets
* bit 1 to select a "hard" reset and clears bit 2. The
* second write forces a 0 -> 1 transition in bit 2 to trigger
* a reset.
*/
outb(0xcf9, 0x2);
outb(0xcf9, 0x6);
busy_delay_ms(500); /* wait 0.5 sec to see if that did it */
/*
* Attempt to force a reset via the Fast A20 and Init register
* at I/O port 0x92. Bit 1 serves as an alternate A20 gate.
* Bit 0 asserts INIT# when set to 1. We are careful to only
* preserve bit 1 while setting bit 0. We also must clear bit
* 0 before setting it if it isn't already clear.
*/
b = inb(0x92);
if (b != 0xff) {
if ((b & 0x1) != 0)
outb(0x92, b & 0xfe);
outb(0x92, b | 0x1);
busy_delay_ms(500); /* wait 0.5 sec to see if that did it */
}
/* Triple fault */
x86_triplefault();
/* Give up on resetting */
while(1) {
;
}
}
2012-03-25 20:25:53 +02:00
static __dead void arch_bios_poweroff(void)
{
u32_t cr0;
/* Disable paging */
cr0 = read_cr0();
cr0 &= ~I386_CR0_PG;
write_cr0(cr0);
/* Copy 16-bit poweroff code to below 1M */
phys_copy(
2011-05-04 18:51:43 +02:00
(u32_t)&poweroff16,
BIOS_POWEROFF_ENTRY,
(u32_t)&poweroff16_end-(u32_t)&poweroff16);
poweroff_jmp();
}
2012-03-25 20:25:53 +02:00
int cpu_has_tsc;
2012-03-25 20:25:53 +02:00
__dead void arch_shutdown(int how)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
vm_stop();
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
/* Mask all interrupts, including the clock. */
outb( INT_CTLMASK, ~0);
if(minix_panicing) {
unsigned char unused_ch;
/* We're panicing? Then retrieve and decode currently
* loaded segment selectors.
*/
printseg("cs: ", 1, get_cpulocal_var(proc_ptr), read_cs());
printseg("ds: ", 0, get_cpulocal_var(proc_ptr), read_ds());
if(read_ds() != read_ss()) {
printseg("ss: ", 0, NULL, read_ss());
}
/* Printing is done synchronously over serial. */
if (do_serial_debug)
reset();
/* Print accumulated diagnostics buffer and reset. */
mb_cls();
mb_print("Minix panic. System diagnostics buffer:\n\n");
mb_print(kmess_buf);
mb_print("\nSystem has panicked, press any key to reboot");
while (!mb_read_char(&unused_ch))
;
reset();
}
#if USE_BOOTPARAM
if (how == RBT_DEFAULT) {
how = RBT_RESET;
}
switch (how) {
case RBT_HALT:
/* Poweroff without boot monitor */
arch_bios_poweroff();
NOT_REACHABLE;
case RBT_PANIC:
/* Allow user to read panic message */
for (; ; ) halt_cpu();
NOT_REACHABLE;
default:
case RBT_REBOOT:
case RBT_RESET:
/* Reset the system by forcing a processor shutdown.
* First stop the BIOS memory test by setting a soft
* reset flag.
*/
reset();
NOT_REACHABLE;
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
2011-09-16 17:31:07 +02:00
#else /* !USE_BOOTPARAM */
/* Poweroff without boot monitor */
arch_bios_poweroff();
#endif
NOT_REACHABLE;
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
2012-03-25 20:25:53 +02:00
void fpu_init(void)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
unsigned short cw, sw;
fninit();
sw = fnstsw();
fnstcw(&cw);
if((sw & 0xff) == 0 &&
(cw & 0x103f) == 0x3f) {
/* We have some sort of FPU, but don't check exact model.
* Set CR0_NE and CR0_MP to handle fpu exceptions
* in native mode. */
write_cr0(read_cr0() | CR0_MP_NE);
get_cpulocal_var(fpu_presence) = 1;
if(_cpufeature(_CPUF_I386_FXSR)) {
u32_t cr4 = read_cr4() | CR4_OSFXSR; /* Enable FXSR. */
/* OSXMMEXCPT if supported
* FXSR feature can be available without SSE
*/
if(_cpufeature(_CPUF_I386_SSE))
cr4 |= CR4_OSXMMEXCPT;
write_cr4(cr4);
osfxsr_feature = 1;
} else {
osfxsr_feature = 0;
}
} else {
/* No FPU presents. */
get_cpulocal_var(fpu_presence) = 0;
osfxsr_feature = 0;
return;
}
}
2012-03-25 20:25:53 +02:00
void save_local_fpu(struct proc *pr, int retain)
{
char *state = pr->p_seg.fpu_state;
/* Save process FPU context. If the 'retain' flag is set, keep the FPU
* state as is. If the flag is not set, the state is undefined upon
* return, and the caller is responsible for reloading a proper state.
*/
2010-09-16 11:51:45 +02:00
if(!is_fpu())
return;
assert(state);
if(osfxsr_feature) {
fxsave(state);
} else {
fnsave(state);
if (retain)
(void) frstor(state);
}
}
2012-03-25 20:25:53 +02:00
void save_fpu(struct proc *pr)
{
2010-09-16 11:51:45 +02:00
#ifdef CONFIG_SMP
if (cpuid != pr->p_cpu) {
int stopped;
/* remember if the process was already stopped */
stopped = RTS_ISSET(pr, RTS_PROC_STOP);
/* stop the remote process and force its context to be saved */
smp_schedule_stop_proc_save_ctx(pr);
/*
* If the process wasn't stopped let the process run again. The
* process is kept block by the fact that the kernel cannot run
* on its cpu
*/
if (!stopped)
RTS_UNSET(pr, RTS_PROC_STOP);
return;
}
#endif
2010-09-16 11:51:45 +02:00
if (get_cpulocal_var(fpu_owner) == pr) {
disable_fpu_exception();
save_local_fpu(pr, TRUE /*retain*/);
2010-09-16 11:51:45 +02:00
}
}
/* reserve a chunk of memory for fpu state; every one has to
* be FPUALIGN-aligned.
*/
static char fpu_state[NR_PROCS][FPU_XFP_SIZE] __aligned(FPUALIGN);
void arch_proc_init(int nr, struct proc *pr)
{
if(nr < 0) return;
char *v;
assert(nr < NR_PROCS);
v = fpu_state[nr];
/* verify alignment */
assert(!((vir_bytes)v % FPUALIGN));
pr->p_seg.fpu_state = v;
}
2012-03-25 20:25:53 +02:00
int restore_fpu(struct proc *pr)
{
int failed;
char *state = pr->p_seg.fpu_state;
assert(state);
if(!proc_used_fpu(pr)) {
fninit();
pr->p_misc_flags |= MF_FPU_INITIALIZED;
} else {
if(osfxsr_feature) {
failed = fxrstor(state);
} else {
failed = frstor(state);
}
if (failed) return EINVAL;
}
return OK;
}
2012-03-25 20:25:53 +02:00
void cpu_identify(void)
{
u32_t eax, ebx, ecx, edx;
unsigned cpu = cpuid;
eax = 0;
_cpuid(&eax, &ebx, &ecx, &edx);
if (ebx == INTEL_CPUID_GEN_EBX && ecx == INTEL_CPUID_GEN_ECX &&
edx == INTEL_CPUID_GEN_EDX) {
cpu_info[cpu].vendor = CPU_VENDOR_INTEL;
} else if (ebx == AMD_CPUID_GEN_EBX && ecx == AMD_CPUID_GEN_ECX &&
edx == AMD_CPUID_GEN_EDX) {
cpu_info[cpu].vendor = CPU_VENDOR_AMD;
} else
cpu_info[cpu].vendor = CPU_VENDOR_UNKNOWN;
if (eax == 0)
return;
eax = 1;
_cpuid(&eax, &ebx, &ecx, &edx);
cpu_info[cpu].family = (eax >> 8) & 0xf;
if (cpu_info[cpu].family == 0xf)
cpu_info[cpu].family += (eax >> 20) & 0xff;
cpu_info[cpu].model = (eax >> 4) & 0xf;
if (cpu_info[cpu].model == 0xf || cpu_info[cpu].model == 0x6)
cpu_info[cpu].model += ((eax >> 16) & 0xf) << 4 ;
cpu_info[cpu].stepping = eax & 0xf;
cpu_info[cpu].flags[0] = ecx;
cpu_info[cpu].flags[1] = edx;
}
2012-03-25 20:25:53 +02:00
void arch_init(void)
{
2011-07-31 16:20:34 +02:00
#ifdef USE_APIC
/*
* this is setting kernel segments to cover most of the phys memory. The
* value is high enough to reach local APIC nad IOAPICs before paging is
* turned on.
*/
prot_set_kern_seg_limit(0xfff00000);
reload_ds();
#endif
idt_init();
/* FIXME stupid a.out
* align the stacks in the stack are to the K_STACK_SIZE which is a
* power of 2
*/
k_stacks = (void*) (((vir_bytes)&k_stacks_start + K_STACK_SIZE - 1) &
~(K_STACK_SIZE - 1));
#ifndef CONFIG_SMP
/*
* use stack 0 and cpu id 0 on a single processor machine, SMP
* configuration does this in smp_init() for all cpus at once
*/
tss_init(0, get_k_stack_top(0));
#endif
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
#if !CONFIG_OXPCIE
ser_init();
#endif
2011-07-31 16:20:34 +02:00
#ifdef USE_ACPI
acpi_init();
2011-07-31 16:20:34 +02:00
#endif
2011-07-31 16:20:34 +02:00
#if defined(USE_APIC) && !defined(CONFIG_SMP)
if (config_no_apic) {
BOOT_VERBOSE(printf("APIC disabled, using legacy PIC\n"));
}
else if (!apic_single_cpu_init()) {
BOOT_VERBOSE(printf("APIC not present, using legacy PIC\n"));
}
#endif
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
2011-08-18 14:56:34 +02:00
#ifdef DEBUG_SERIAL
2012-03-25 20:25:53 +02:00
void ser_putc(char c)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
int i;
int lsr, thr;
#if CONFIG_OXPCIE
oxpcie_putc(c);
#else
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
lsr= COM1_LSR;
thr= COM1_THR;
for (i= 0; i<100000; i++)
{
if (inb( lsr) & LSR_THRE)
break;
}
outb( thr, c);
#endif
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
2011-08-16 17:18:55 +02:00
/*===========================================================================*
* do_ser_debug *
*===========================================================================*/
2012-03-25 20:25:53 +02:00
void do_ser_debug()
{
u8_t c, lsr;
#if CONFIG_OXPCIE
{
int oxin;
if((oxin = oxpcie_in()) >= 0)
ser_debug(oxin);
}
#endif
lsr= inb(COM1_LSR);
if (!(lsr & LSR_DR))
return;
c = inb(COM1_RBR);
ser_debug(c);
}
2012-03-25 20:25:53 +02:00
static void ser_dump_queue_cpu(unsigned cpu)
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
{
int q;
struct proc ** rdy_head;
rdy_head = get_cpu_var(cpu, run_q_head);
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
for(q = 0; q < NR_SCHED_QUEUES; q++) {
struct proc *p;
if(rdy_head[q]) {
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
printf("%2d: ", q);
for(p = rdy_head[q]; p; p = p->p_nextready) {
printf("%s / %d ", p->p_name, p->p_endpoint);
}
printf("\n");
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
}
}
}
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
2012-03-25 20:25:53 +02:00
static void ser_dump_queues(void)
{
#ifdef CONFIG_SMP
unsigned cpu;
printf("--- run queues ---\n");
for (cpu = 0; cpu < ncpus; cpu++) {
printf("CPU %d :\n", cpu);
ser_dump_queue_cpu(cpu);
}
#else
ser_dump_queue_cpu(0);
#endif
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
}
2012-03-25 20:25:53 +02:00
static void ser_dump_segs(void)
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
{
struct proc *pp;
for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
{
if (isemptyp(pp))
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
continue;
printf("%d: %s ep %d\n", proc_nr(pp), pp->p_name, pp->p_endpoint);
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
printseg("cs: ", 1, pp, pp->p_reg.cs);
printseg("ds: ", 0, pp, pp->p_reg.ds);
if(pp->p_reg.ss != pp->p_reg.ds) {
printseg("ss: ", 0, pp, pp->p_reg.ss);
}
}
}
#ifdef CONFIG_SMP
2012-03-25 20:25:53 +02:00
static void dump_bkl_usage(void)
{
unsigned cpu;
printf("--- BKL usage ---\n");
for (cpu = 0; cpu < ncpus; cpu++) {
printf("cpu %3d kernel ticks 0x%x%08x bkl ticks 0x%x%08x succ %d tries %d\n", cpu,
ex64hi(kernel_ticks[cpu]),
ex64lo(kernel_ticks[cpu]),
ex64hi(bkl_ticks[cpu]),
ex64lo(bkl_ticks[cpu]),
bkl_succ[cpu], bkl_tries[cpu]);
}
}
2012-03-25 20:25:53 +02:00
static void reset_bkl_usage(void)
{
memset(kernel_ticks, 0, sizeof(kernel_ticks));
memset(bkl_ticks, 0, sizeof(bkl_ticks));
memset(bkl_tries, 0, sizeof(bkl_tries));
memset(bkl_succ, 0, sizeof(bkl_succ));
}
#endif
2012-03-25 20:25:53 +02:00
static void ser_debug(const int c)
{
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
serial_debug_active = 1;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
switch(c)
{
case 'Q':
minix_shutdown(NULL);
NOT_REACHABLE;
#ifdef CONFIG_SMP
case 'B':
dump_bkl_usage();
break;
case 'b':
reset_bkl_usage();
break;
#endif
case '1':
ser_dump_proc();
break;
case '2':
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
ser_dump_queues();
break;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
case '3':
ser_dump_segs();
break;
#ifdef CONFIG_SMP
case '4':
ser_dump_proc_cpu();
break;
#endif
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
#if DEBUG_TRACE
#define TOGGLECASE(ch, flag) \
case ch: { \
if(verboseflags & flag) { \
verboseflags &= ~flag; \
printf("%s disabled\n", #flag); \
} else { \
verboseflags |= flag; \
printf("%s enabled\n", #flag); \
} \
break; \
}
TOGGLECASE('8', VF_SCHEDULING)
TOGGLECASE('9', VF_PICKPROC)
#endif
2011-07-31 16:20:34 +02:00
#ifdef USE_APIC
case 'I':
dump_apic_irq_state();
break;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
#endif
}
NMI watchdog is an awesome feature for debugging locked up kernels. There is not that much use for it on a single CPU, however, deadlock between kernel and system task can be delected. Or a runaway loop. If a kernel gets locked up the timer interrupts don't occure (as all interrupts are disabled in kernel mode). The only chance is to interrupt the kernel by a non-maskable interrupt. This patch generates NMIs using performance counters. It uses the most widely available performace counters. As the performance counters are highly model-specific this patch is not guaranteed to work on every machine. Unfortunately this is also true for KVM :-/ On the other hand adding this feature for other models is not extremely difficult and the framework makes it hopefully easy enough. Depending on the frequency of the CPU an NMI is generated at most about every 0.5s If the cpu's speed is less then 2Ghz it is generated at most every 1s. In general an NMI is generated much less often as the performance counter counts down only if the cpu is not idle. Therefore the overhead of this feature is fairly minimal even if the load is high. Uppon detecting that the kernel is locked up the kernel dumps the state of the kernel registers and panics. Local APIC must be enabled for the watchdog to work. The code is _always_ compiled in, however, it is only enabled if watchdog=<non-zero> is set in the boot monitor. One corner case is serial console debugging. As dumping a lot of stuff to the serial link may take a lot of time, the watchdog does not detect lockups during this time!!! as it would result in too many false positives. 10 nmi have to be handled before the lockup is detected. This means something between ~5s to 10s. Another corner case is that the watchdog is enabled only after the paging is enabled as it would be pure madness to try to get it right.
2010-01-16 21:53:55 +01:00
serial_debug_active = 0;
}
2012-03-25 20:25:53 +02:00
void ser_dump_proc()
{
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
struct proc *pp;
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
for (pp= BEG_PROC_ADDR; pp < END_PROC_ADDR; pp++)
{
if (isemptyp(pp))
Primary goal for these changes is: - no longer have kernel have its own page table that is loaded on every kernel entry (trap, interrupt, exception). the primary purpose is to reduce the number of required reloads. Result: - kernel can only access memory of process that was running when kernel was entered - kernel must be mapped into every process page table, so traps to kernel keep working Problem: - kernel must often access memory of arbitrary processes (e.g. send arbitrary processes messages); this can't happen directly any more; usually because that process' page table isn't loaded at all, sometimes because that memory isn't mapped in at all, sometimes because it isn't mapped in read-write. So: - kernel must be able to map in memory of any process, in its own address space. Implementation: - VM and kernel share a range of memory in which addresses of all page tables of all processes are available. This has two purposes: . Kernel has to know what data to copy in order to map in a range . Kernel has to know where to write the data in order to map it in That last point is because kernel has to write in the currently loaded page table. - Processes and kernel are separated through segments; kernel segments haven't changed. - The kernel keeps the process whose page table is currently loaded in 'ptproc.' - If it wants to map in a range of memory, it writes the value of the page directory entry for that range into the page directory entry in the currently loaded map. There is a slot reserved for such purposes. The kernel can then access this memory directly. - In order to do this, its segment has been increased (and the segments of processes start where it ends). - In the pagefault handler, detect if the kernel is doing 'trappable' memory access (i.e. a pagefault isn't a fatal error) and if so, - set the saved instruction pointer to phys_copy_fault, breaking out of phys_copy - set the saved eax register to the address of the page fault, both for sanity checking and for checking in which of the two ranges that phys_copy was called with the fault occured - Some boot-time processes do not have their own page table, and are mapped in with the kernel, and separated with segments. The kernel detects this using HASPT. If such a process has to be scheduled, any page table will work and no page table switch is done. Major changes in kernel are - When accessing user processes memory, kernel no longer explicitly checks before it does so if that memory is OK. It simply makes the mapping (if necessary), tries to do the operation, and traps the pagefault if that memory isn't present; if that happens, the copy function returns EFAULT. So all of the CHECKRANGE_OR_SUSPEND macros are gone. - Kernel no longer has to copy/read and parse page tables. - A message copying optimisation: when messages are copied, and the recipient isn't mapped in, they are copied into a buffer in the kernel. This is done in QueueMess. The next time the recipient is scheduled, this message is copied into its memory. This happens in schedcheck(). This eliminates the mapping/copying step for messages, and makes it easier to deliver messages. This eliminates soft_notify. - Kernel no longer creates a page table at all, so the vm_setbuf and pagetable writing in memory.c is gone. Minor changes in kernel are - ipc_stats thrown out, wasn't used - misc flags all renamed to MF_* - NOREC_* macros to enter and leave functions that should not be called recursively; just sanity checks really - code to fully decode segment selectors and descriptors to print on exceptions - lots of vmassert()s added, only executed if DEBUG_VMASSERT is 1
2009-09-21 16:31:52 +02:00
continue;
print_proc_recursive(pp);
}
}
#ifdef CONFIG_SMP
2012-03-25 20:25:53 +02:00
static void ser_dump_proc_cpu(void)
{
struct proc *pp;
unsigned cpu;
for (cpu = 0; cpu < ncpus; cpu++) {
printf("CPU %d processes : \n", cpu);
for (pp= BEG_USER_ADDR; pp < END_PROC_ADDR; pp++) {
if (isemptyp(pp) || pp->p_cpu != cpu)
continue;
print_proc(pp);
}
}
}
#endif
2011-08-16 17:18:55 +02:00
#endif /* DEBUG_SERIAL */
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
#if SPROFILE
2012-03-25 20:25:53 +02:00
int arch_init_profile_clock(const u32_t freq)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
int r;
/* Set CMOS timer frequency. */
outb(RTC_INDEX, RTC_REG_A);
outb(RTC_IO, RTC_A_DV_OK | freq);
/* Enable CMOS timer interrupts. */
outb(RTC_INDEX, RTC_REG_B);
r = inb(RTC_IO);
outb(RTC_INDEX, RTC_REG_B);
outb(RTC_IO, r | RTC_B_PIE);
/* Mandatory read of CMOS register to enable timer interrupts. */
outb(RTC_INDEX, RTC_REG_C);
inb(RTC_IO);
return CMOS_CLOCK_IRQ;
}
2012-03-25 20:25:53 +02:00
void arch_stop_profile_clock(void)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
int r;
/* Disable CMOS timer interrupts. */
outb(RTC_INDEX, RTC_REG_B);
r = inb(RTC_IO);
outb(RTC_INDEX, RTC_REG_B);
outb(RTC_IO, r & ~RTC_B_PIE);
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
}
2012-03-25 20:25:53 +02:00
void arch_ack_profile_clock(void)
Split of architecture-dependent and -independent functions for i386, mainly in the kernel and headers. This split based on work by Ingmar Alting <iaalting@cs.vu.nl> done for his Minix PowerPC architecture port. . kernel does not program the interrupt controller directly, do any other architecture-dependent operations, or contain assembly any more, but uses architecture-dependent functions in arch/$(ARCH)/. . architecture-dependent constants and types defined in arch/$(ARCH)/include. . <ibm/portio.h> moved to <minix/portio.h>, as they have become, for now, architecture-independent functions. . int86, sdevio, readbios, and iopenable are now i386-specific kernel calls and live in arch/i386/do_* now. . i386 arch now supports even less 86 code; e.g. mpx86.s and klib86.s have gone, and 'machine.protected' is gone (and always taken to be 1 in i386). If 86 support is to return, it should be a new architecture. . prototypes for the architecture-dependent functions defined in kernel/arch/$(ARCH)/*.c but used in kernel/ are in kernel/proto.h . /etc/make.conf included in makefiles and shell scripts that need to know the building architecture; it defines ARCH=<arch>, currently only i386. . some basic per-architecture build support outside of the kernel (lib) . in clock.c, only dequeue a process if it was ready . fixes for new include files files deleted: . mpx/klib.s - only for choosing between mpx/klib86 and -386 . klib86.s - only for 86 i386-specific files files moved (or arch-dependent stuff moved) to arch/i386/: . mpx386.s (entry point) . klib386.s . sconst.h . exception.c . protect.c . protect.h . i8269.c
2006-12-22 16:22:27 +01:00
{
/* Mandatory read of CMOS register to re-enable timer interrupts. */
outb(RTC_INDEX, RTC_REG_C);
inb(RTC_IO);
}
#endif
/* Saved by mpx386.s into these variables. */
u32_t params_size, params_offset, mon_ds;
2012-03-25 20:25:53 +02:00
int arch_get_params(char *params, int maxsize)
{
phys_copy(seg2phys(mon_ds) + params_offset, vir2phys(params),
MIN(maxsize, params_size));
params[maxsize-1] = '\0';
return OK;
}
2012-03-25 20:25:53 +02:00
int arch_set_params(char *params, int size)
{
if(size > params_size)
return E2BIG;
phys_copy(vir2phys(params), seg2phys(mon_ds) + params_offset, size);
return OK;
}
2012-03-25 20:25:53 +02:00
void arch_do_syscall(struct proc *proc)
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
{
/* do_ipc assumes that it's running because of the current process */
assert(proc == get_cpulocal_var(proc_ptr));
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
/* Make the system call, for real this time. */
proc->p_reg.retreg =
do_ipc(proc->p_reg.cx, proc->p_reg.retreg, proc->p_reg.bx);
Merge of David's ptrace branch. Summary: o Support for ptrace T_ATTACH/T_DETACH and T_SYSCALL o PM signal handling logic should now work properly, even with debuggers being present o Asynchronous PM/VFS protocol, full IPC support for senda(), and AMF_NOREPLY senda() flag DETAILS Process stop and delay call handling of PM: o Added sys_runctl() kernel call with sys_stop() and sys_resume() aliases, for PM to stop and resume a process o Added exception for sending/syscall-traced processes to sys_runctl(), and matching SIGKREADY pseudo-signal to PM o Fixed PM signal logic to deal with requests from a process after stopping it (so-called "delay calls"), using the SIGKREADY facility o Fixed various PM panics due to race conditions with delay calls versus VFS calls o Removed special PRIO_STOP priority value o Added SYS_LOCK RTS kernel flag, to stop an individual process from running while modifying its process structure Signal and debugger handling in PM: o Fixed debugger signals being dropped if a second signal arrives when the debugger has not retrieved the first one o Fixed debugger signals being sent to the debugger more than once o Fixed debugger signals unpausing process in VFS; removed PM_UNPAUSE_TR protocol message o Detached debugger signals from general signal logic and from being blocked on VFS calls, meaning that even VFS can now be traced o Fixed debugger being unable to receive more than one pending signal in one process stop o Fixed signal delivery being delayed needlessly when multiple signals are pending o Fixed wait test for tracer, which was returning for children that were not waited for o Removed second parallel pending call from PM to VFS for any process o Fixed process becoming runnable between exec() and debugger trap o Added support for notifying the debugger before the parent when a debugged child exits o Fixed debugger death causing child to remain stopped forever o Fixed consistently incorrect use of _NSIG Extensions to ptrace(): o Added T_ATTACH and T_DETACH ptrace request, to attach and detach a debugger to and from a process o Added T_SYSCALL ptrace request, to trace system calls o Added T_SETOPT ptrace request, to set trace options o Added TO_TRACEFORK trace option, to attach automatically to children of a traced process o Added TO_ALTEXEC trace option, to send SIGSTOP instead of SIGTRAP upon a successful exec() of the tracee o Extended T_GETUSER ptrace support to allow retrieving a process's priv structure o Removed T_STOP ptrace request again, as it does not help implementing debuggers properly o Added MINIX3-specific ptrace test (test42) o Added proper manual page for ptrace(2) Asynchronous PM/VFS interface: o Fixed asynchronous messages not being checked when receive() is called with an endpoint other than ANY o Added AMF_NOREPLY senda() flag, preventing such messages from satisfying the receive part of a sendrec() o Added asynsend3() that takes optional flags; asynsend() is now a #define passing in 0 as third parameter o Made PM/VFS protocol asynchronous; reintroduced tell_fs() o Made PM_BASE request/reply number range unique o Hacked in a horrible temporary workaround into RS to deal with newly revealed RS-PM-VFS race condition triangle until VFS is asynchronous System signal handling: o Fixed shutdown logic of device drivers; removed old SIGKSTOP signal o Removed is-superuser check from PM's do_procstat() (aka getsigset()) o Added sigset macros to allow system processes to deal with the full signal set, rather than just the POSIX subset Miscellaneous PM fixes: o Split do_getset into do_get and do_set, merging common code and making structure clearer o Fixed setpriority() being able to put to sleep processes using an invalid parameter, or revive zombie processes o Made find_proc() global; removed obsolete proc_from_pid() o Cleanup here and there Also included: o Fixed false-positive boot order kernel warning o Removed last traces of old NOTIFY_FROM code THINGS OF POSSIBLE INTEREST o It should now be possible to run PM at any priority, even lower than user processes o No assumptions are made about communication speed between PM and VFS, although communication must be FIFO o A debugger will now receive incoming debuggee signals at kill time only; the process may not yet be fully stopped o A first step has been made towards making the SYSTEM task preemptible
2009-09-30 11:57:22 +02:00
}
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
2012-03-25 20:25:53 +02:00
struct proc * arch_finish_switch_to_user(void)
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
{
char * stk;
struct proc * p;
#ifdef CONFIG_SMP
stk = (char *)tss[cpuid].sp0;
#else
stk = (char *)tss[0].sp0;
#endif
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
/* set pointer to the process to run on the stack */
p = get_cpulocal_var(proc_ptr);
*((reg_t *)stk) = (reg_t) p;
return p;
Complete ovehaul of mode switching code - after a trap to kernel, the code automatically switches to kernel stack, in the future local to the CPU - k_reenter variable replaced by a test whether the CS is kernel cs or not. The information is passed further if needed. Removes a global variable which would need to be cpu local - no need for global variables describing the exception or trap context. This information is kept on stack and a pointer to this structure is passed to the C code as a single structure - removed loadedcr3 variable and its use replaced by reading the %cr3 register - no need to redisable interrupts in restart() as they are already disabled. - unified handling of traps that push and don't push errorcode - removed save() function as the process context is not saved directly to process table but saved as required by the trap code. Essentially it means that save() code is inlined everywhere not only in the exception handling routine - returning from syscall is more arch independent - it sets the retger in C - top of the x86 stack contains the current CPU id and pointer to the currently scheduled process (the one right interrupted) so the mode switch code can find where to save the context without need to use proc_ptr which will be cpu local in the future and therefore difficult to access in assembler and expensive to access in general - some more clean up of level0 code. No need to read-back the argument passed in %eax from the proc structure. The mode switch code does not clobber %the general registers and hence we can just call what is in %eax - many assebly macros in sconst.h as they will be reused by the apic assembly
2009-11-06 10:08:26 +01:00
}
2012-03-25 20:25:53 +02:00
void fpu_sigcontext(struct proc *pr, struct sigframe *fr, struct sigcontext *sc)
{
int fp_error;
if (osfxsr_feature) {
fp_error = sc->sc_fpu_state.xfp_regs.fp_status &
~sc->sc_fpu_state.xfp_regs.fp_control;
} else {
fp_error = sc->sc_fpu_state.fpu_regs.fp_status &
~sc->sc_fpu_state.fpu_regs.fp_control;
}
if (fp_error & 0x001) { /* Invalid op */
/*
* swd & 0x240 == 0x040: Stack Underflow
* swd & 0x240 == 0x240: Stack Overflow
* User must clear the SF bit (0x40) if set
*/
fr->sf_code = FPE_FLTINV;
} else if (fp_error & 0x004) {
fr->sf_code = FPE_FLTDIV; /* Divide by Zero */
} else if (fp_error & 0x008) {
fr->sf_code = FPE_FLTOVF; /* Overflow */
} else if (fp_error & 0x012) {
fr->sf_code = FPE_FLTUND; /* Denormal, Underflow */
} else if (fp_error & 0x020) {
fr->sf_code = FPE_FLTRES; /* Precision */
} else {
fr->sf_code = 0; /* XXX - probably should be used for FPE_INTOVF or
* FPE_INTDIV */
}
}
#if !CONFIG_OXPCIE
2012-03-25 20:25:53 +02:00
static void ser_init(void)
{
unsigned char lcr;
unsigned divisor;
/* keep BIOS settings if cttybaud is not set */
if (serial_debug_baud <= 0) return;
/* set DLAB to make baud accessible */
lcr = LCR_8BIT | LCR_1STOP | LCR_NPAR;
outb(COM1_LCR, lcr | LCR_DLAB);
/* set baud rate */
divisor = UART_BASE_FREQ / serial_debug_baud;
if (divisor < 1) divisor = 1;
if (divisor > 65535) divisor = 65535;
outb(COM1_DLL, divisor & 0xff);
outb(COM1_DLM, (divisor >> 8) & 0xff);
/* clear DLAB */
outb(COM1_LCR, lcr);
}
#endif